Skip to main content

Mycorrhizal Networks: A Secret Interplant Communication System

  • Chapter
  • First Online:
Plant Mycobiome

Abstract

Mycorrhizal symbiosis has received special attention due to its benefits for terrestrial plants and soil sustainability. Here, we focus on the most important aspects of plant interaction with ectomycorrhiza and endomycorrhiza. Mycorrhizal fungi establish symbiotic association with plants through recognition systems discriminating friend and foes. These fungi are able to interconnect plants via developing their common mycelial network. These associations are multifunctional for translocation of nutrients and signaling compounds which affects the composition and fitness of both mycorrhiza and plant community. We discussed several theories describing the fluctuation of symbiosis under stress and normal conditions. Mycorrhizal fungi have great potential in regulating of relationships in ecosystem and application of these fungi can restore the disturbance imposed by human activities both in forests and agriculture. We also pointed several unexplored areas, where new technologies can experimentally expose their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achatz M, Morris EK, Müller F, Hilker M, Rillig MC (2014) Soil hypha-mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Funct Ecol 28:1020–1029

    Article  Google Scholar 

  • Adelstein SJ, Manning FJ (1995) Isotopes for medicine and the life sciences. National Academies Press, Washington, DC

    Google Scholar 

  • Alizadeh O (2011) Mycorrhizal symbiosis. Adv Stud Biol 6:273–281

    Google Scholar 

  • Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Asghari H, Marschner P, Smith S, Smith F (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    Article  CAS  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 5:16–20

    CAS  Google Scholar 

  • Barbosa MV, Pedroso DF, Curi N, Carneiro MAC (2019) Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciênc Agrotecnol 43. https://doi.org/10.1590/1413-7054201943003519

  • Basiru S, Mwanza HP, Hijri M (2020) Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Becquer A, Guerrero-Galán C, Eibensteiner JL, Houdinet G, Bücking H, Zimmermann SD, Garcia K (2019) The ectomycorrhizal contribution to tree nutrition. Adv Bot Res (Elsevier) 89:77–126

    Article  CAS  Google Scholar 

  • Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  PubMed  Google Scholar 

  • Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Cairney JW (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71

    Article  CAS  Google Scholar 

  • Calvin M (1974) Solar energy by photosynthesis. Science 184:375–381

    Article  CAS  PubMed  Google Scholar 

  • Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C (2015) Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. New Phytol 208:224–240

    Article  CAS  PubMed  Google Scholar 

  • Castro-Delgado AL (2020) Wood wide web: communication through the mycorrhizal network. Tecnología en Marcha 33:114–125

    Google Scholar 

  • Čatská V (1997) Smith, S.E., Read, D.J.: Mycorrhizal symbiosis. Biol Plant 40:154–154

    Article  Google Scholar 

  • Chen S, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124

    Article  Google Scholar 

  • Corrêa A, Gurevitch J, Martins-Loução MA, Cruz C (2012) C allocation to the fungus is not a cost to the plant in ectomycorrhizae. Oikos 121:449–463

    Article  Google Scholar 

  • Cruz-Paredes C, Gavito ME (2020) Isotope labeling to study phosphorus uptake in the arbuscular mycorrhizal symbiosis. Methods Mol Biol 2146:213–222

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen J-G (2013) A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 14:7681–7701

    Article  PubMed  PubMed Central  Google Scholar 

  • Deja-Sikora E, Kowalczyk A, Trejgell A, Szmidt-Jaworska A, Baum C, Mercy L, Hrynkiewicz K (2020) Arbuscular mycorrhiza changes the impact of potato virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Front Microbiol 10:2971

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey M, Ghosh S (2022) Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere 22:100524

    Article  Google Scholar 

  • Ding C, Zhao Y, Zhang Q, Lin Y, Xue R, Chen C, Zeng R, Chen D, Song Y (2022) Cadmium transfer between maize and soybean plants via common mycorrhizal networks. Ecotoxicol Environ Saf 232:113273

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa T, Saito K (2018) How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol 220:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P (2020) Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 30:5–22

    Article  PubMed  Google Scholar 

  • Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656

    Article  CAS  PubMed  Google Scholar 

  • Fester T (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether-and ammonia-contaminated groundwater bioremediation. Microb Biotechnol 6:80–84

    Article  PubMed  Google Scholar 

  • Figueiredo AF, Boy J, Guggenberger G (2021) Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front Fungal Biol 2:735299

    Article  Google Scholar 

  • Finlay R, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Mycorrhizal functioning. Chapman & Hall, New York, pp 134–160

    Google Scholar 

  • Fujita M, Kusajima M, Fukagawa M, Okumura Y, Nakajima M, Akiyama K, Asami T, Yoneyama K, Kato H, Nakashita H (2022) Response of tomatoes primed by mycorrhizal colonization to virulent and avirulent bacterial pathogens. Sci Rep 12:1–12

    Article  Google Scholar 

  • Gallou A, Lucero Mosquera HP, Cranenbrouck S, Suárez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76:20–26

    Article  CAS  Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing Inocula. Agronomy 10:106

    Article  Google Scholar 

  • Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Goicoechea N (2020) Mycorrhizal fungi as bioprotectors of crops against verticillium wilt—A hypothetical scenario under changing environmental conditions. Plan Theory 9:1468

    CAS  Google Scholar 

  • Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7:plv050

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyuricza V, Thiry Y, Wannijn J, Declerck S, Dupré de Boulois H (2010) Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 12:2180–2189

    CAS  PubMed  Google Scholar 

  • Hata S, Kobae Y, Banba M (2010) Interactions between plants and arbuscular mycorrhizal fungi. Int Rev Cell Mol Biol 281:1–48

    Article  CAS  PubMed  Google Scholar 

  • He X, Xu M, Qiu GY, Zhou J (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, Fricker MD (2012) Analysis of fungal networks. Fungal Biol Rev 26:12–29

    Article  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • Hodge A, Helgason T, Fitter A (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273

    Article  Google Scholar 

  • Hu J-L, Lin X-G, Wang J-H, Shen W-S, Wu S, Peng S-P, Mao T-T (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber fusarium wilt in greenhouse soils. Pedosphere 20:586–593

    Article  CAS  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881

    Article  CAS  PubMed  Google Scholar 

  • Ingraffia R, Giambalvo D, Frenda AS, Roma E, Ruisi P, Amato G (2021) Mycorrhizae differentially influence the transfer of nitrogen among associated plants and their competitive relationships. Appl Soil Ecol 168:104127

    Article  Google Scholar 

  • Jamiołkowska A, Skwaryło-Bednarz B, Michałek W (2019) Response of tomato seedlings inoculated with mycorrhizal fungi on the photosynthetic activity, growth, and health status of plants after infection with the fungus Colletotrichum coccodes. Acta Agrobot 72:1785

    Article  Google Scholar 

  • Jamiołkowska A, Skwaryło-Bednarz B, Thanoon AH, Kursa W (2021) Contribution of mycorrhizae to sustainable and ecological agriculture: a review. Int Agrophys 35:331–341

    Article  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. PNAS 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Durall DM, Cairney JW (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  PubMed  Google Scholar 

  • Kanyuka K, Rudd JJ (2019) Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Curr Opin Plant Biol 50:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehri HK, Akhtar O, Zoomi I, Pandey D (2018) Arbuscular mycorrhizal fungi: taxonomy and its systematics. Int J Life Sci Res 6:58–71

    Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kolaříková Z, Slavíková R, Krüger C, Krüger M, Kohout P (2021) PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytol 231:490–499

    Article  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Leigh EG Jr (2010) The evolution of mutualism. J Evol Biol 23:2507–2528

    Article  PubMed  Google Scholar 

  • Lettice EP (2018) The rhizosphere: measuring the zone of interaction. Ann Plant Rev Online 2:219–236

    Google Scholar 

  • Liu T, Sheng M, Wang C, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258

    Article  CAS  Google Scholar 

  • Liu S-H, Zeng G-M, Niu Q-Y, Liu Y, Zhou L, Jiang L-H, Tan X-F, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33

    Article  CAS  PubMed  Google Scholar 

  • Marschner P (2012) Chapter 15: Rhizosphere biology. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, San Diego, pp 369–388

    Chapter  Google Scholar 

  • Martin BD, Schwab E (2012) Symbiosis: “living together” in chaos. Stud Hist Biol 4:7–25

    Google Scholar 

  • Marx D, Ruehle J, Cordell C (1991) 17 methods for studying nursery and field response of trees to specific Ectomycorrhiza. In: Methods in microbiology. Elsevier, pp 383–411

    Google Scholar 

  • Mbora A, Lillesø J-PB, Jamnadass R (2008) Good nursery practices: a simple guide. World Agroforestry Centre, Nairobi

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Merckx V (2012) Mycoheterotrophy: the biology of plants living on fungi. Springer Science & Business Media, New York

    Google Scholar 

  • Michałojć Z, Jarosz Z, Pitura K, Dzida K (2015) Effect of mycorrhizal colonization and nutrient solutions concentration on the yielding and chemical composition of tomato grown in rockwool and straw medium. Acta Scientiarum Polonorum-Hortorum Cultus 14:15–27

    Google Scholar 

  • Muneer MA, Wang P, Zaib un N, Lin C, Ji B (2020) Potential role of common mycorrhizal networks in improving plant growth and soil physicochemical properties under varying nitrogen levels in a grassland ecosystem. Glob Ecol Conserv 24:e01352

    Article  Google Scholar 

  • Murray JD, Cousins DR, Jackson KJ, Liu C (2013) Signaling at the root surface: the role of cutin monomers in mycorrhization. Mol Plant 6:1381–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9:e86882

    Article  PubMed  PubMed Central  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Oelmüller R (2019) Interplant communication via hyphal networks. Plant Physiol Rep 24:463–473

    Article  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with Rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Pandey D, Kehri HK, Zoomi I, Akhtar O, Singh AK (2019) Mycorrhizal fungi: biodiversity, ecological significance, and industrial applications. In: Recent advancement in white biotechnology through fungi. Springer, Cham, pp 181–199

    Chapter  Google Scholar 

  • Perez-Lamarque B, Selosse M-A, Öpik M, Morlon H, Martos F (2020) Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol 226:1822–1835

    Article  PubMed  Google Scholar 

  • Philip LJ (2006) The role of ectomycorrhizal fungi in carbon transfer within common mycorrhizal networks. University of British Columbia

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Plenchette C, Strullu DG (2003) Long-term viability and infectivity of intraradical forms of Glomus intraradices vesicles encapsulated in alginate beads. Mycol Res 107:614–616

    Article  PubMed  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a Mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Chapter 3: Polymicrobial multi-functional approach for enhancement of crop productivity. In: Sariaslani S, Gadd GM (eds). Academic, Advances in applied microbiology, pp 53–113

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: seperating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rincón A, Alvarez IF, Pera J (2001) Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza 11:265–271

    Article  PubMed  Google Scholar 

  • Rozpądek P, Domka AM, Nosek M, Ważny R, Jędrzejczyk RJ, Wiciarz M, Turnau K (2018) The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Front Microbiol 9:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Saladin G, Clément C (2005) Physiological side effects of pesticides on non-target plants. In: Agriculture and soil pollution: new research. Nova Science Publishers, Inc, pp 53–86

    Google Scholar 

  • Sanchez-Zabala J, Majada J, Martín-Rodrigues N, Gonzalez-Murua C, Ortega U, Alonso-Graña M, Arana O, Duñabeitia MK (2013) Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23:627–640

    Article  CAS  PubMed  Google Scholar 

  • Sapp J (2004) The dynamics of symbiosis: an historical overview. Can J Bot 82:1046–1056

    Article  Google Scholar 

  • Sapp J (2010) On the origin of symbiosis. In: Symbioses and stress. Springer, pp 3–18

    Chapter  Google Scholar 

  • Schmitz AM, Harrison MJ (2014) Signaling events during initiation of arbuscular mycorrhizal symbiosis. J Integr Plant Biol 56:250–261

    Article  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 163–185

    Chapter  Google Scholar 

  • Selosse M-A, Cameron DD (2010) Introduction to a virtual special issue on mycoheterotrophy: new Phytologist sheds light on non-green plants. New Phytol 185:591–593

    Article  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Dehariya K, Vyas D, Jha A (2015) Interactions between arbuscular mycorrhizae and Fusarium oxysporum f. sp. ciceris: effects on fungal development, seedling growth and wilt disease suppression in Cicer arietinum L. Arch Phytopathol Plant Prot 48:240–252

    Article  Google Scholar 

  • Simard SW, Asay A. Beiler KJ, Bingham MA, Deslippe JR, He, X, Philip LJ, Sony Y, Teste FP (2015) Resource transfer between plants through ectomycorrhizal fungal networks. In: Horton TR (ed), Mycorrhizal networks. (Ecological studies: Analysis and Synthesis). Springer, vol 224, pp 133–176. http://link.springer.com/book/10.1007/978-94-017-7395-9

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5:e13324

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Wang M, Zeng R, Groten K, Baldwin IT (2019) Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant Cell Environ 42:2945–2961

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    Article  PubMed  Google Scholar 

  • Thirkell T, Cameron D, Hodge A (2019) Contrasting nitrogen fertilisation rates Alter mycorrhizal contribution to barley nutrition in a field trial. Front Plant Sci 10:1312

    Article  PubMed  PubMed Central  Google Scholar 

  • van’t Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET (2021) Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J 15:435–449

    Article  Google Scholar 

  • Velmourougane K, Saxena G, Prasanna R (2017) Plant-microbe interactions in the rhizosphere: mechanisms and their ecological benefits. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 193–219

    Google Scholar 

  • Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30:671–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li X, Zhou J, Wang G, Dong Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plant Anal 39:499–509

    Article  Google Scholar 

  • Wang G, Sheng L, Zhao D, Sheng J, Wang X, Liao H (2016) Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Front Plant Sci 7:1901

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Schäfer M, Li D, Halitschke R, Dong C, McGale E, Paetz C, Song Y, Li S, Dong J (2018) Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. elife 7:e37093

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hao Z, Zhang X, Xie W, Chen B (2022a) Arbuscular mycorrhizal fungi induced plant resistance against fusarium wilt in Jasmonate biosynthesis defective mutant and wild type of tomato. J Fungi 8:422

    Article  CAS  Google Scholar 

  • Wang Y, He X, Yu F (2022b) Non-host plants: are they mycorrhizal networks players? Plant Divers 44:127–134

    Article  PubMed  Google Scholar 

  • Weremijewicz J, Sternberg LSLOR, Janos DP (2016) Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol 212:461–471

    Article  CAS  PubMed  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Song F, Liu S, Liu T, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Karimi-Jashni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karimi-Jashni, M., Yazdanpanah, F. (2023). Mycorrhizal Networks: A Secret Interplant Communication System. In: Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A. (eds) Plant Mycobiome. Springer, Cham. https://doi.org/10.1007/978-3-031-28307-9_17

Download citation

Publish with us

Policies and ethics