Skip to main content

CoreGDM: Geometric Deep Learning Network Decycling and Dismantling

  • Conference paper
  • First Online:
Complex Networks XIV (CompleNet 2023)

Abstract

Network dismantling deals with the removal of nodes or edges to disrupt the largest connected component of a network. In this work we introduce CoreGDM, a trainable algorithm for network dismantling via node-removal. The approach is based on Geometric Deep Learning and that merges the Graph Dismantling Machine (GDM) [19] framework with the CoreHD [40] algorithm, by attacking the 2-core of the network using a learnable score function in place of the degree-based one. Extensive experiments on fifteen real-world networks show that CoreGDM outperforms the original GDM formulation and the other state-of-the-art algorithms, while also being more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crime network dataset – KONECT, Apr 2017. http://konect.cc/networks/moreno_crime

  2. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000). https://doi.org/10.1038/35019019

  3. Arciprete, A., Carchiolo, V., Chiavetta, D., Grassia, M., Malgeri, M., Mangioni, G.: Geometric deep learning graph pruning to speed-up the run-time of maximum clique enumerarion algorithms. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds.) Complex Networks and Their Applications XI, pp. 415–425. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-21127-0_34

    Chapter  Google Scholar 

  4. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scalable fully distributed web crawler. Softw. Pract. Exp. 34(8), 711–726 (2004)

    Article  Google Scholar 

  5. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: WWW, pp. 587–596 (2011)

    Google Scholar 

  6. Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Natl Acad. Sci. 113(44), 12368–12373 (2016). https://doi.org/10.1073/pnas.1605083113

  7. CAIDA: Ipv4 routed /24 as links dataset. http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml

  8. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., Mangioni, G.: Exploiting long distance connections to strengthen network robustness. In: Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J.J. (eds.) IDCS 2018. LNCS, vol. 11226, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02738-4_23

    Chapter  Google Scholar 

  9. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., Mangioni, G.: Network robustness improvement via long-range links. Comput. Soc. Netw. 6(1), 1–16 (2019). https://doi.org/10.1186/s40649-019-0073-2

    Article  Google Scholar 

  10. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., Mangioni, G.: Efficient node pagerank improvement via link building using geometric deep learning. ACM Trans. Knowl. Discov. Data (2022). https://doi.org/10.1145/3551642

  11. Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions in online social media. In: Proceedings of International Conference on Computer Science and Engineering, pp. 151–158 (2009)

    Google Scholar 

  12. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86(16), 3682–3685 (2001). https://doi.org/10.1103/physrevlett.86.3682

  13. Coulomb, S., Bauer, M., Bernard, D., Marsolier-Kergoat, M.C.: Gene essentiality and the topology of protein interaction networks. Proc. R. Soc. B Biol. Sci. 272(1573), 1721–1725 (2005)

    Article  Google Scholar 

  14. Csardi, G., Nepusz, T.: The Igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006). http://igraph.sf.net

  15. De Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek, vol. 27. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  16. Ewing, R.M., et al.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007)

    Article  Google Scholar 

  17. Fan, C., Zeng, L., Sun, Y., Liu, Y.Y.: Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2(6), 317–324 (2020). https://doi.org/10.1038/s42256-020-0177-2

  18. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  19. Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12(1), 5190 (2021). https://doi.org/10.1038/s41467-021-25485-8

  20. Grassia, M., Mangioni, G.: wsGAT: weighted and signed graph attention networks for link prediction. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) Complex Networks & Their Applications X, pp. 369–375. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93409-5_31

    Chapter  MATH  Google Scholar 

  21. Guo, G., Zhang, J., Yorke-Smith, N.: A novel Bayesian similarity measure for recommender systems. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 2619–2625 (2013)

    Google Scholar 

  22. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), pp. 11–15. Pasadena, CA USA, August 2008

    Google Scholar 

  23. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)

    MATH  Google Scholar 

  24. Han, J.D.J., Dupuy, D., Bertin, N., Cusick, M.E., Vidal, M.: Effect of sampling on topology predictions of protein-protein interaction networks. Nat. Biotechnol. 23(7), 839–844 (2005)

    Article  Google Scholar 

  25. Hayes, B.: Connecting the dots. can the tools of graph theory and social-network studies unravel the next big plot? Am. Sci. 94(5), 400–404 (2006)

    Google Scholar 

  26. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002). https://doi.org/10.1103/PhysRevE.65.056109, https://link.aps.org/doi/10.1103/PhysRevE.65.056109

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). https://doi.org/10.48550/ARXIV.1609.02907, https://arxiv.org/abs/1609.02907

  28. Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges. In: Proceedings of International World Wide Web Conference, pp. 741–750 (2009). https://cc/kunegis/paper/kunegis-slashdot-zoo.pdf

    Google Scholar 

  29. Liao, R., et al.: Efficient graph generation with graph recurrent attention networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/d0921d442ee91b896ad95059d13df618-Paper.pdf

  30. Matke, C., Medjroubi, W., Kleinhans, D.: SciGRID - An Open Source Reference Model for the European Transmission Network, vol. 2, July 2016. http://www.scigrid.de

  31. Morone, F., Min, B., Bo, L., Mari, R., Makse, H.A.: Collective influence algorithm to find influencers via optimal percolation in massively large social media. Sci. Rep. 6, 30062 (2016)

    Article  ADS  Google Scholar 

  32. Peixoto, T.P.: The graph-tool python library. figshare (2014). https://doi.org/10.6084/m9.figshare.1164194, http://figshare.com/articles/graph_tool/1164194

  33. Ren, X.L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. 116(14), 6554–6559 (2019). https://doi.org/10.1073/pnas.1806108116, https://www.pnas.org/content/116/14/6554

  34. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.M.: Temporal graph networks for deep learning on dynamic graphs. CoRR abs/2006.10637 (2020). arxiv.org:2006.10637

  35. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com

  36. Stumpf, M.P., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc. Natl. Acad. Sci. U.S.A. 102(12), 4221–4224 (2005)

    Article  ADS  Google Scholar 

  37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

  38. Šubelj, L., Bajec, M.: Software systems through complex networks science: review, analysis and applications. In: Proceedings of International Workshop on Software Mining, pp. 9–16 (2012)

    Google Scholar 

  39. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(1), 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  40. Zdeborová, L., Zhang, P., Zhou, H.J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6(1), 37954 (2016). https://doi.org/10.1038/srep37954

  41. Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the Internet AS-level topology. SIGCOMM Comput. Commun. Rev. 35(1), 53–61 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The Italian Ministry for Research and Education (MIUR) through Research Program PRIN 2017 (2017CWMF93), project ‘Advanced Network Control of Future Smart Grids - VECTORS’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mangioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grassia, M., Mangioni, G. (2023). CoreGDM: Geometric Deep Learning Network Decycling and Dismantling. In: Teixeira, A.S., Botta, F., Mendes, J.F., Menezes, R., Mangioni, G. (eds) Complex Networks XIV. CompleNet 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-28276-8_8

Download citation

Publish with us

Policies and ethics