Skip to main content

Crop Diversification: An Adaptive Option for Climate Change Resilience in West Bengal

  • Chapter
  • First Online:
Climate Change, Agriculture and Society

Abstract

Climate change can have negative consequences for agricultural production resulting in increased vulnerability to agricultural systems. Crop diversification can improve resilience in agriculture through a variety of ways to suppress pest outbreaks and reduce pathogen transmission, by buffering crop production from the effects of future climate scenarios, as well as greater climate variability and extreme events. Such gains point to the clear value of adopting crop diversification to improve resilience, yet adoption of crop diversification has been seen slow. This paper examines the diversity of crop (HI) in context of climate change and vulnerability (IPCC) in a coastal state West Bengal of India. The study utilizes 16 selected variables obtained from secondary sources and estimates the climate vulnerability indices amongst all districts using exposure, sensitivity and adaptive capacity of IPCC (Climate Change 2014: Synthesis Report. IPCC, Geneva, Switzerland, 2007) method. The region of crop diversification (HI) was developed to detect diverse agricultural impacts. The districts have been ranked on the basis of IPCC vulnerability index where low rank number shows the most vulnerable district and high rank number indicates lowest vulnerability district. The vulnerability is varying from 0.0148 highest vulnerability in South 24 Parganas district with rank 1, 0.0022 lowest vulnerability in Howrah district with rank 18. District Howrah recorded for highest crop diversification (0.001) and lowest vulnerability (0.0022). It has been found that most vulnerable districts have medium crop diversification while low vulnerable districts reported for high cop diversification which indicates that crop diversification can be increased to reduce the vulnerability. Some districts in West Bengal have been cited as effective traditional systems of farming, lack of technology, average holding size and low diversification of per capita income. The expansion of crop diversification depends on improvement in production risk through technical assistance, quality input supply, insurance cover and the existence of modern storage-processing centres in the region. It is found that agricultural sector is gradually moving towards higher value crops in agro-climatic zone of West Bengal and its districts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abson, D. J., Fraser, E. D., & Benton, T. G. (2013). Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agriculture & Food Security, 2, 1–15.

    Article  Google Scholar 

  • Abu Hatab, A., Cavinato, M. E. R., Lindemer, A., & Lagerkvist, C. J. (2019). Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities, 94(June), 129–142.

    Article  Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agro ecosystems. Agric Ecosystem Environment, 74(1), 19–31. https://doi.org/10.1016/S0167-8809(99)00028-6

  • Barrett, C. B., Bezuneh, M., Clay, D. C., & Reardon, T. (2001). Heterogeneous constraints, incentives and income diversification strategies in Rural Africa. Quarterly Journal of International Agriculture, 44, 37.

    Google Scholar 

  • Benin, S., Smale, M., Pender, J. L., Gebremedhin, B., & Ehui, S. K. (2004). The economic determinants of cereal crop diversity on farms in the Ethiopian highlands. Agricultural Economics, 31, 197–208.

    Article  Google Scholar 

  • Bigsten, A., & Tengstam, S. (1970). Smallholder diversification and income growth in Zambia. Journal of African Economies, 20, 781–822. https://doi.org/10.1093/jae/ejr017

  • Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230–238. https://doi.org/10.1016/jtree201210012

  • Bradshaw, B., Dolan, H., & Smit, B. (2004). Farm-level adaptation to climatic variability and change: Crop diversification in the Canadian prairies. Climatic Change, 67(1), 119–141.

    Article  ADS  Google Scholar 

  • Brooks, N., & Adger, W. N. (2005). Assessing and enhancing adaptive capacity. In B. Lim & E. Spanger- Siegfried (Eds.), Adaptation policy frameworks for climate change: Developing strategies, policies and measures (pp. 165–181). UNDP-GEF. Cambridge University Press.

    Google Scholar 

  • Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., & Thornton, P. K. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43.

    Article  Google Scholar 

  • Census of India. (2011). Registrar General and Census Commissioner of India. New Delhi: Government of India.

    Google Scholar 

  • Chand, R. (1996). Diversification through high value crops in Western Himalayan Region: Evidence from Himachal Pradesh. Indian Journal of Agricultural Economics, XXXXI(4), 652–663.

    Google Scholar 

  • Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J., & Kremen, C. (2011). A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 14(9), 922–32. https://doi.org/10.1111/j1461-0248201101642x

  • Demissie, A., & Legesse, B. (2013). Determinants of income diversification among rural households: The case of smallholder farmers in Fedis district, Eastern Hararghe zone, Ethiopia. Journal of Development and Agricultural Economics, 5, 120–128.

    Article  Google Scholar 

  • Dutta, S. (2012). A spatiotemporal analysis of crop diversification in Hugli District. West Bengal. Geo-Analyst.

    Google Scholar 

  • Farina, A. (1998). Principles and methods in landscape ecology. Chapman & Hall.

    Google Scholar 

  • Feyissa, G., Zeleke, G., Gebremariam, E., & Bewket, W. (2018). GIS based quantification and mapping of climate change vulnerability hotspots in Addis Ababa. Geoenviron Disasters, 5(1), 14. https://doi.org/10.1186/s40677-018-0106-4

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2015). The State of Food Insecurity in the World. FAO.

    Google Scholar 

  • Gardiner, M. M., Landis, D. A., Gratton, C., Difonzo, C. D., O’Neal, M. E., Chacón, J. M., Wayo, M. T., Schmidt, N. P., Mueller, E., & Heimpel, G. E. (2009). Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecological Applications: A Publication of the Ecological Society of America, 19(1), 143–154.

    Article  CAS  PubMed  Google Scholar 

  • Gebreegziabher, Z., Mekonnen, A., Bekele, R. D., Bane, J., & Zewdie, S. A. (2018). Mapping vulnerability to climate change of the farming sector in the Nile Basin of Ethiopia: A micro-level perspective. In Agricultural Adaptation to Climate Change in Africa, 28(54), 28–54. Routledge, England, UK.

    Google Scholar 

  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society b: Biological Sciences, 365(1554), 2973–2989.

    Article  Google Scholar 

  • Heal, G. (2000). Nature and the marketplace: Capturing the value of ecosystem services. Island Press.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • IPCC. (2007). Climate Change (2007) Impacts adaptation and vulnerability. Summary for policy makers. Intergovernmental panel on climate change (IPCC). http://www.ipcc.cg/SPMpdf

  • IPCC (Intergovernmental Panel on climate change). (2013). Summary for policymakers. In T. Stocker, D. Qin et al., (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA. Accessed November 11, 2015.

    Google Scholar 

  • IPCC (Intergovernmental Panel on climate change). (2014). In Core Writing Team, R. K. Pachauri & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland (accessed 11/11/2015)

    Google Scholar 

  • Iyengar, N. S., & Sudarshan, P. (1982). A method of classifying regions from multivariate data. Econ Polit Weekly 17(51), 2047–2052. Available at https://www.jstor.org/stable/4371674

  • Khanal, A. R., & Mishra, A. K. (2017). Enhancing food security: Food crop portfolio choice in response to climatic risk in India (pp. 22–30). Global Food Security, December 12, 2016. https://doi.org/10.1016/j.gfs.2016.12.003

  • Kumar, A., Kumar, P., & Sharma, A. N. (2012). Crop diversification in Eastern India: Status and determinants. Indian Journal of Agricultural Economics, 67, 1–17.

    Google Scholar 

  • Lin, B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience, 61(3), 183–193. https://doi.org/10.1525/bio20116134

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Makate, C., Wang, R., Makate, M., & Mango, N. (2016). Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change. Springer Plus 5(1), 1135. https://doi.org/10.1186/s40064-016-2802-4

  • Malek, K., Adam, J. C., Stöckle, C. O., & Peters, R. T. (2018). Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. Journal of Hydrology, 561, 444–460.

    Article  ADS  Google Scholar 

  • McCord, P. F., Cox, M., Schmitt-Harsh, M., & Evans, T. P. (2015). Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy, 42, 738–750.

    Article  Google Scholar 

  • Mhango, W. G., Snap, S. S., & Phiri, G. Y. K. (2013). Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renewable Agricultural and Food System, 28(3), 234–244. https://doi.org/10.1017/S1742170512000178

  • Misra, A. K. (2014). Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153–165.

    Article  Google Scholar 

  • Njeru, E. M. (2016). Crop diversification: A potential strategy to mitigate food insecurity by smallholders in Sub Sahara Africa. Journal of Agriculture, Food System, and Community Development, 3(4), 63–69. https://doi.org/10.5304/jafscd2013034006

  • Pandey, V. K., & Sharma, K. C. (1996). Crop diversification and self-sufficiency in food grains. Indian Journal of Agricultural Economics, LI, 4, 644–651.

    Google Scholar 

  • Raju, A. (2012). Patterns of crop concentration and diversification in Vizianagaram District of Andhra Pradesh. Transaction, II, 34.

    ADS  Google Scholar 

  • Rathore, L. S., Attri, S. D., & Jaswal, A. K. (2013). State level climate change trends in India. Meteorological Monograph No. ESSO/IMD/EMRC/02/2013. Published by IMD. Available at: http://www.imd.gov.in/section/climate/StateLevelClimateChangeMonoFinal.pdf

  • Rukhsana. (2021). Micro and macro-level analysis of crop diversification: Evidence from an Agrarian State West Bengal. Indian Journal of Economics and Development, 16(4), 489–499. https://doi.org/10.35716/IJED/20037

  • Rukhsana, Alam, A., & Mandal, I. (2021a). Household analysis of crop diversification and socioeconomic classifications of agriculture practitioner. In Rukhsana, A. Alam (Eds.), Agriculture, food and nutrition security. Springer, Cham. https://doi.org/10.1007/978-3-030-69333-6_7

  • Rukhsana, Alam, A., & Mandal, I. (2021b). Impact of microclimate on agriculture in India: Transformation and adaptation. In Rukhsana, A. Alam (Eds.), Agriculture, food and nutrition security. Springer, Cham. https://doi.org/10.1007/978-3-030-69333-6_3

  • Sahaj K. B. C., & Nayban, G. (2008). Kolkata: Ananda Agency.

    Google Scholar 

  • Saleth, & Maria, R. (1995). Prospects, agricultural diversification in Tamil Nadu. Institute of economic Growth.

    Google Scholar 

  • Smithers, J., & Smit, B. (1997). Human adaptation to climatic variability and change. Global Environmental Change, 7(2), 129–146.

    Article  Google Scholar 

  • State Action Plan on Climate Change. (2012). Government of West Bengal, page 46, http://www.moef.nic.in/sites/default/files/sapcc/West-Bengal.pdf

  • State of Environment Report, West Bengal. (2016). West Bengal Pollution Control Board, India.

    Google Scholar 

  • Statistical abstract. (2015). Bureau of applied economics and statistics, Government of West Bengal.

    Google Scholar 

  • Sullivan, C., Meigh, J. R., & Fediw, T. S. (2002). Derivation and testing of the water poverty index phase 1, final report. Department for International Development, UK.

    Google Scholar 

  • Tang, J., Zhang, B., Gao, C., & Zepp, H. (2008). Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment. CATENA, 72, 374–385.

    Article  Google Scholar 

  • UNDP/United Nations Development Programme. (2016). A technical note: Calculating the human development indices—Graphical presentation.

    Google Scholar 

  • UNDP. (2006). Human development report United Nations Development Program. http://hdr.undp.org/hdr2006/statistics

  • UNDP. (2007). Human development reports. http://hdr.undp.org/en/. Accessed December 25, 2007.

  • Yellamanda Reddy, T., & Sankara Reddi, G. H. (2010). Principles of agronomy. Ludhiana: Kalyani Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukhsana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rukhsana (2023). Crop Diversification: An Adaptive Option for Climate Change Resilience in West Bengal. In: Alam, A., Rukhsana (eds) Climate Change, Agriculture and Society. Springer, Cham. https://doi.org/10.1007/978-3-031-28251-5_10

Download citation

Publish with us

Policies and ethics