Skip to main content

Geographic Information Extraction from Texts (GeoExT)

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2023)

Abstract

A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, T., et al.: Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8(1), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  2. Arulanandam, R., Savarimuthu, B.T.R., Purvis, M.A.: Extracting crime information from online newspaper articles. In: Proceedings of the Second Australasian Web Conference, vol. 155, pp. 31–38 (2014)

    Google Scholar 

  3. Bongard, J., Kersten, J., Klan, F.: Searching and structuring the twitter stream for crisis response: a flexible concept to support research and practice. In: Proceedings of the 4th International Open Search Symposium, OSSYM (2022)

    Google Scholar 

  4. Gritta, M., Pilehvar, M.T., Limsopatham, N., Collier, N.: What’s missing in geographical parsing? Lang. Resour. Eval. 52(2), 603–623 (2018)

    Article  Google Scholar 

  5. Haris, E., Gan, K.H.: Mining graphs from travel blogs: a review in the context of tour planning. Inf. Technol. Tourism 17(4), 429–453 (2017). https://doi.org/10.1007/s40558-017-0095-2

    Article  Google Scholar 

  6. Hu, X., et al.: Gazpne: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules. Int. J. Geogr. Inf. Sci. 36(2), 310–337 (2021)

    Article  Google Scholar 

  7. Hu, X., Sun, Y., Kersten, J., Zhou, Z., Klan, F., Fan, H.: How can voting mechanisms improve the robustness and generalizability of toponym disambiguation? arXiv preprint arXiv:2209.08286 (2022)

  8. Hu, X., et al.: Location reference recognition from texts: a survey and comparison. arXiv preprint arXiv:2207.01683 (2022)

  9. Hu, X., et al.: Gazpne2: a general place name extractor for microblogs fusing gazetteers and pretrained transformer models. IEEE Internet Things J. 9(17), 16259–16271 (2022). https://doi.org/10.1109/JIOT.2022.3150967

    Article  Google Scholar 

  10. Hu, Y., Adams, B.: Harvesting big geospatial data from natural language texts. In: Werner, M., Chiang, Y.-Y. (eds.) Handbook of Big Geospatial Data, pp. 487–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55462-0_19

    Chapter  Google Scholar 

  11. Hu, Y., Janowicz, K.: Improving personal information management by integrating activities in the physical world with the semantic desktop. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 578–581 (2012)

    Google Scholar 

  12. Hu, Y., Janowicz, K., Prasad, S.: Improving wikipedia-based place name disambiguation in short texts using structured data from dbpedia. In: Proceedings of the 8th Workshop on Geographic Information Retrieval, pp. 1–8 (2014)

    Google Scholar 

  13. Hu, Y., Wang, J.: How do people describe locations during a natural disaster: an analysis of tweets from hurricane harvey. arXiv preprint arXiv:2009.12914 (2020)

  14. Karimzadeh, M., Pezanowski, S., MacEachren, A.M., Wallgrün, J.O.: Geotxt: a scalable geoparsing system for unstructured text geolocation. Trans. GIS 23(1), 118–136 (2019)

    Article  Google Scholar 

  15. Kersten, J., Bongard, J., Klan, F.: Gaussian processes for one-class and binary classification of crisis-related tweets. In: Proceedings of the 19th International Conference on Information Systems for Crisis Response and Management, ISCRAM (2022)

    Google Scholar 

  16. Kersten, J., Klan, F.: What happens where during disasters? a workflow for the multifaceted characterization of crisis events based on twitter data. J. Contingencies Crisis Manage. 28(3), 262–280 (2020)

    Article  Google Scholar 

  17. Kersten, J., Kruspe, A., Wiegmann, M., Klan, F.: Robust filtering of crisis-related tweets. In: Proceedings of the 16th International Conference on Information Systems for Crisis Response and Management, 19–22 May ISCRAM (2019)

    Google Scholar 

  18. Kinsella, S., Murdock, V., O’Hare, N.: “ I’m eating a sandwich in glasgow” modeling locations with tweets. In: Proceedings of the 3rd International Workshop on Search and Mining User-Generated Contents, pp. 61–68 (2011)

    Google Scholar 

  19. Kruspe, A., Kersten, J., Klan, F.: Review article: detection of actionable tweets in crisis events. Nat. Hazards Earth Syst. Sci. 21(6), 1825–1845 (2021)

    Article  Google Scholar 

  20. Melo, F., Martins, B.: Automated geocoding of textual documents: a survey of current approaches. Trans. GIS 21(1), 3–38 (2017)

    Article  Google Scholar 

  21. Milusheva, S., Marty, R., Bedoya, G., Williams, S., Resor, E., Legovini, A.: Applying machine learning and geolocation techniques to social media data (twitter) to develop a resource for urban planning. PLOS ONE 16(2), 1–12 (2021). https://doi.org/10.1371/journal.pone.0244317

  22. Purves, R.S., Clough, P., Jones, C.B., Hall, M.H., Murdock, V.: Geographic information retrieval: Progress and challenges in spatial search of text. Found. Trendső Inf. Retrieval 12(2–3), 164–318 (2018). https://doi.org/10.1561/1500000034

  23. Scalia, G., Francalanci, C., Pernici, B.: Cime: context-aware geolocation of emergency-related posts. Geoinformatica 26(1), 125–157 (2022). https://doi.org/10.1007/s10707-021-00446-x

  24. Wang, J., Hu, Y., Joseph, K.: Neurotpr: a neuro-net toponym recognition model for extracting locations from social media messages. Trans. GIS 24(3), 719–735 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuke Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Hu, Y., Resch, B., Kersten, J. (2023). Geographic Information Extraction from Texts (GeoExT). In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13982. Springer, Cham. https://doi.org/10.1007/978-3-031-28241-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28241-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28240-9

  • Online ISBN: 978-3-031-28241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics