Skip to main content

Probing BERT for Ranking Abilities

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2023)

Abstract

Contextual models like BERT are highly effective in numerous text-ranking tasks. However, it is still unclear as to whether contextual models understand well-established notions of relevance that are central to IR. In this paper, we use probing, a recent approach used to analyze language models, to investigate the ranking abilities of BERT-based rankers. Most of the probing literature has focussed on linguistic and knowledge-aware capabilities of models or axiomatic analysis of ranking models. In this paper, we fill an important gap in the information retrieval literature by conducting a layer-wise probing analysis using four probes based on lexical matching, semantic similarity as well as linguistic properties like coreference resolution and named entity recognition. Our experiments show an interesting trend that BERT-rankers better encode ranking abilities at intermediate layers. Based on our observations, we train a ranking model by augmenting the ranking data with the probe data to show initial yet consistent performance improvements (The code is available at https://github.com/yolomeus/probing-search/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/huggingface/neuralcoref.

  2. 2.

    https://huggingface.co/bert-base-uncased.

References

  1. Aghajanyan, A., Gupta, A., Shrivastava, A., Chen, X., Zettlemoyer, L., Gupta, S.: Muppet: Massive multi-task representations with pre-finetuning. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7–11 Nov 2021, pp. 5799–5811. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.468

  2. van Aken, B., Winter, B., Löser, A., Gers, F.A.: How does BERT answer questions?: A layer-wise analysis of transformer representations. In: Zhu, W., et al. (eds.) Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China,3–7 Nov 2019, pp. 1823–1832. ACM (2019). https://doi.org/10.1145/3357384.3358028

  3. Anand, A., Leonhardt, J., Rudra, K., Anand, A.: Supervised contrastive learning approach for contextual ranking. In: Crestani, F., Pasi, G., Gaussier, É. (eds.) ICTIR 2022: The 2022 ACM SIGIR International Conference on the Theory of Information Retrieval, Madrid, Spain, 11–12 July 2022, pp. 61–71. ACM (2022). https://doi.org/10.1145/3539813.3545139

  4. Anand, A., Lyu, L., Idahl, M., Wang, Y., Wallat, J., Zhang, Z.: Explainable information retrieval: a survey. CoRR abs/2211.02405 (2022). https://arxiv.org/abs/2211.02405

  5. Belinkov, Y.: Probing classifiers: promises, shortcomings, and advances. Comput. Linguist. 48(1), 207–219 (2022). https://doi.org/10.1162/coli_a_00422

  6. Belinkov, Y., Glass, J.: Analysis methods in neural language processing: a survey. Trans. Assoc. Comput. Linguist. 7, 49–72 (2019). https://doi.org/10.1162/tacl_a_00254. https://www.aclweb.org/anthology/Q19-1004

  7. Câmara, A., Hauff, C.: Diagnosing bert with retrieval heuristics. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 605–618. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_40

    Chapter  Google Scholar 

  8. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). https://doi.org/10.1023/A:1007379606734

  9. Choi, J., Jung, E., Lim, S., Rhee, W.: Finding inverse document frequency information in BERT. CoRR abs/2202.12191 (2022). https://arxiv.org/abs/2202.12191

  10. Clarke, C.L.A., Kolla, M., Vechtomova, O.: An effectiveness measure for ambiguous and underspecified queries. In: Azzopardi, L., et al. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 188–199. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04417-5_17

    Chapter  Google Scholar 

  11. Conneau, A., Kruszewski, G., Lample, G., Barrault, L., Baroni, M.: What you can cram into a single \$ &!#* vector: probing sentence embeddings for linguistic properties. In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, 15–20 July 2018, Volume 1: Long Papers, pp. 2126–2136. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/P18-1198. https://www.aclweb.org/anthology/P18-1198/

  12. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the TREC 2019 deep learning track. CoRR abs/2003.07820 (2020). https://arxiv.org/abs/2003.07820

  13. Dehghani, M., Zamani, H., Severyn, A., Kamps, J., Croft, W.B.: Neural ranking models with weak supervision. In: Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.P., White, R.W. (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 7–11 August 2017, pp. 65–74. ACM (2017). https://doi.org/10.1145/3077136.3080832

  14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423

  15. Elazar, Y., Ravfogel, S., Jacovi, A., Goldberg, Y.: Amnesic probing: behavioral explanation with amnesic counterfactuals. Trans. Assoc. Comput. Linguistics 9, 160–175 (2021). https://doi.org/10.1162/tacl_a_00359. https://doi.org/10.1162/tacl_a_00359

  16. Fan, Y., Guo, J., Ma, X., Zhang, R., Lan, Y., Cheng, X.: A linguistic study on relevance modeling in information retrieval. In: Leskovec, J., Grobelnik, M., Najork, M., Tang, J., Zia, L. (eds.) WWW 2021: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, 19–23 Apr 2021, pp. 1053–1064. ACM / IW3C2 (2021). https://doi.org/10.1145/3442381.3450009

  17. Fayyaz, M., Aghazadeh, E., Modarressi, A., Mohebbi, H., Pilehvar, M.T.: Not all models localize linguistic knowledge in the same place: a layer-wise probing on bertoids’ representations. In: Bastings, J., et al. (eds.) Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2021, Punta Cana, Dominican Republic, 11 Nov 2021, pp. 375–388. Association for Computational Linguistics (2021). https://aclanthology.org/2021.blackboxnlp-1.29

  18. Formal, T., Piwowarski, B., Clinchant, S.: SPLADE: sparse lexical and expansion model for first stage ranking. In: Diaz, F., Shah, C., Suel, T., Castells, P., Jones, R., Sakai, T. (eds.) SIGIR 2021: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, 11–15 July 2021, pp. 2288–2292. ACM (2021). https://doi.org/10.1145/3404835.3463098

  19. Ghasemi, N., Hiemstra, D.: BERT meets cranfield: uncovering the properties of full ranking on fully labeled data. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, pp. 58–64. Association for Computational Linguistics, Online (2021). https://aclanthology.org/2021.eacl-srw.9

  20. Hagen, M., Völske, M., Göring, S., Stein, B.: Axiomatic result re-ranking. In: Mukhopadhyay, S., et al.(eds.) Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 721–730. ACM (2016). https://doi.org/10.1145/2983323.2983704

  21. Hewitt, J., Ethayarajh, K., Liang, P., Manning, C.D.: Conditional probing: measuring usable information beyond a baseline. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7–11 November 2021, pp. 1626–1639. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.122

  22. Hewitt, J., Liang, P.: Designing and interpreting probes with control tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–2743. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1275. https://aclanthology.org/D19-1275

  23. Hewitt, J., Manning, C.D.: A structural probe for finding syntax in word representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1419. https://www.aclweb.org/anthology/N19-1419

  24. Honnibal, M., Montani, I.: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing. Unpublished Software Application. https://spacy.io (2017)

  25. Khalid, M.A., Jijkoun, V., de Rijke, M.: The impact of named entity normalization on information retrieval for question answering. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 705–710. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_83

    Chapter  Google Scholar 

  26. Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over BERT. In: Huang, J., et al. (eds.) Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 39–48. ACM (2020). https://doi.org/10.1145/3397271.3401075

  27. Kim, M., Ko, Y.: Multitask fine-tuning for passage re-ranking using BM25 and pseudo relevance feedback. IEEE Access 10, 54254–54262 (2022). https://doi.org/10.1109/ACCESS.2022.3176894

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1412.6980

  29. Leonhardt, J., Rudra, K., Khosla, M., Anand, A., Anand, A.: Efficient neural ranking using forward indexes. In: Laforest, F., et al. (eds.) WWW 2022: The ACM Web Conference 2022, Virtual Event, Lyon, France, 25–29 April 2022, pp. 266–276. ACM (2022). https://doi.org/10.1145/3485447.3511955

  30. Li, H., Xu, J.: Semantic matching in search. Found. Trends Inf. Retr. 7(5), 343–469 (2014). https://doi.org/10.1561/1500000035

  31. MacAvaney, S., Feldman, S., Goharian, N., Downey, D., Cohan, A.: ABNIRML: analyzing the behavior of neural IR models. Trans. Assoc. Comput. Linguistics 10, 224–239 (2022). https://doi.org/10.1162/tacl_a_00457

  32. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press (2008). https://doi.org/10.1017/CBO9780511809071. https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

  33. Nogueira, R.F., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085 (2019). https://arxiv.org/abs/1901.04085

  34. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1162. https://aclanthology.org/D14-1162

  35. Petroni, F., et al.: KILT: a benchmark for knowledge intensive language tasks. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2523–2544. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.naacl-main.200. https://aclanthology.org/2021.naacl-main.200

  36. Petroni, F., et al.: Language models as knowledge bases? In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1250. https://aclanthology.org/D19-1250

  37. Pimentel, T., Saphra, N., Williams, A., Cotterell, R.: Pareto probing: trading off accuracy for complexity. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3138–3153. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.254. https://www.aclweb.org/anthology/2020.emnlp-main.254

  38. Qiao, Y., Xiong, C., Liu, Z., Liu, Z.: Understanding the behaviors of BERT in ranking. CoRR abs/1904.07531 (2019). https://arxiv.org/abs/1904.07531

  39. Rau, D., Kamps, J.: The role of complex NLP in transformers for text ranking. In: Crestani, F., Pasi, G., Gaussier, É. (eds.) ICTIR 2022: The 2022 ACM SIGIR International Conference on the Theory of Information Retrieval, Madrid, Spain, 11–12 July 2022, pp. 153–160. ACM (2022). https://doi.org/10.1145/3539813.3545144

  40. Rennings, D., Lyu, L., Anand, A.: Listwise explanations for ranking models using multiple explainers. In: Advances in Information Retrieval - 45th European Conference on IR Research, ECIR 2023, Dublin, Ireland, Proceedings, Part I. Lecture Notes in Computer Science, Springer (2023)

    Google Scholar 

  41. Rennings, D., Moraes, F., Hauff, C.: An axiomatic approach to diagnosing neural IR models. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 489–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_32

    Chapter  Google Scholar 

  42. Rissanen, J.: Universal coding, information, prediction, and estimation. IEEE Trans. Inf. Theory 30(4), 629–636 (1984). https://doi.org/10.1109/TIT.1984.1056936

  43. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at TREC-3. In: Harman, D.K. (ed.) Proceedings of The Third Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, 2–4 Nov 1994. NIST Special Publication, vol. 500–225, pp. 109–126. National Institute of Standards and Technology (NIST) (1994). https://trec.nist.gov/pubs/trec3/papers/city.ps.gz

  44. Rudra, K., Anand, A.: Distant supervision in BERT-based Adhoc document retrieval. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E., Cudré-Mauroux, P. (eds.) CIKM 2020: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, 19–23 October 2020, pp. 2197–2200. ACM (2020). https://doi.org/10.1145/3340531.3412124

  45. Singh, J., Anand, A.: EXS: explainable search using local model agnostic interpretability. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, 11–15 Feb 2019, pp. 770–773. ACM (2019). https://doi.org/10.1145/3289600.3290620

  46. Singh, J., Anand, A.: Model agnostic interpretability of rankers via intent modelling. In: Hildebrandt, M., Castillo, C., Celis, L.E., Ruggieri, S., Taylor, L., Zanfir-Fortuna, G. (eds.) FAT* 2020: Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 Jan 2020, pp. 618–628. ACM (2020). https://doi.org/10.1145/3351095.3375234

  47. Tenney, I., Das, D., Pavlick, E.: BERT rediscovers the classical NLP pipeline. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4593–4601. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1452. https://www.aclweb.org/anthology/P19-1452

  48. Tenney, I., et al.: What do you learn from context? probing for sentence structure in contextualized word representations. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=SJzSgnRcKX

  49. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and Verification. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 809–819. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-1074. https://aclanthology.org/N18-1074

  50. Voita, E., Titov, I.: Information-theoretic probing with minimum description length. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 183–196. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.14. https://www.aclweb.org/anthology/2020.emnlp-main.14

  51. Völske, M., et al.: Towards axiomatic explanations for neural ranking models. In: Hasibi, F., Fang, Y., Aizawa, A. (eds.) ICTIR 2021: The 2021 ACM SIGIR International Conference on the Theory of Information Retrieval, Virtual Event, Canada, 11 July 2021, pp. 13–22. ACM (2021). https://doi.org/10.1145/3471158.3472256

  52. Wallat, J., Singh, J., Anand, A.: BERTnesia: investigating the capture and forgetting of knowledge in BERT. In: Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 174–183. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.blackboxnlp-1.17. https://aclanthology.org/2020.blackboxnlp-1.17

  53. Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: An analysis of BERT in document ranking. In: Huang, J., et al. (eds.) Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 1941–1944. ACM (2020). https://doi.org/10.1145/3397271.3401325

  54. Zhang, K., Bowman, S.: Language modeling teaches you more than translation does: Lessons learned through auxiliary syntactic task analysis. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 359–361. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/W18-5448. https://www.aclweb.org/anthology/W18-5448

  55. Zhang, X., Ramachandran, D., Tenney, I., Elazar, Y., Roth, D.: Do language embeddings capture scales? In: Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 292–299. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.blackboxnlp-1.27. https://aclanthology.org/2020.blackboxnlp-1.27

  56. Zhao, M., Dufter, P., Yaghoobzadeh, Y., Schütze, H.: Quantifying the contextualization of word representations with semantic class probing. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1219–1234. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.109. https://www.aclweb.org/anthology/2020.findings-emnlp.109

Download references

Acknowledgements

This research was (partially) funded by the Federal Ministry of Education and Research (BMBF), Germany under the project LeibnizKILabor with grant No. 01DD20003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Wallat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wallat, J., Beringer, F., Anand, A., Anand, A. (2023). Probing BERT for Ranking Abilities. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13981. Springer, Cham. https://doi.org/10.1007/978-3-031-28238-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28238-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28237-9

  • Online ISBN: 978-3-031-28238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics