Skip to main content

Abstract

As social robots make their way into human environments, they need to communicate with the humans around them in rich and engaging ways. Sound is one of the core modalities of communication and, beyond speech, affects and engages people across cultures and language barriers. While a growing body of work in human–robot interaction (HRI) investigates the various ways it affects interactions, a comprehensive map of the many approaches to sound has yet to be created. In this chapter, we therefore ask “What are the ways robotic agents can communicate with us through sound?”, “How does it affect the listener?” and “What goals should researchers, practitioners and designers have when creating these languages?” These questions are examined with reference to HRI studies, and robotic agents developed in commercial, artistic and academic contexts. The resulting map provides an overview of how sound can be used to enrich human–robot interactions, including sound uttered by robots, sound performed by robots, sound as background to HRI scenarios, sound associated with robot movement, and sound responsive to human actions. We aim to provide researchers and designers with a visual tool that summarises the role sound can play in creating rich and engaging human–robot interactions and hope to establish a common framework for thinking about robot sound, encouraging robot makers to engage with sound as a serious part of the robot interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup M, Jensen LC, Fischer K (2015) The sound makes the greeting: interpersonal functions of intonation in human-robot interaction. In: 2015 AAAI spring symposium series

    Google Scholar 

  • Atkeson CG, Hale JG, Pollick F, Riley M, Kotosaka S, Schaul S, Shibata T, Tevatia G, Ude A, Vijayakumar S et al (2000) Using humanoid robots to study human behavior. IEEE Intell Syst Appl 15(4):46–56

    Article  Google Scholar 

  • Ayesh A (2006) Structured sound based language for emotional robotic communicative interaction. In: ROMAN 2006—The 15th IEEE international symposium on robot and human interactive communication. IEEE, pp 135–140

    Google Scholar 

  • Ayesh A (2009) Emotionally expressive music based interaction language for social robots. ICGST Int J Autom Robot Auton Syst 9(1):1–10

    Google Scholar 

  • Bartneck C, Forlizzi J (2004) A design-centred framework for social human-robot interaction. In: RO-MAN 2004. 13th IEEE international workshop on robot and human interactive communication. IEEE, Kurashiki, Okayama, Japan, pp 591–594. https://doi.org/10.1109/ROMAN.2004.1374827

  • Barton S (2013) The human, the mechanical, and the spaces in between: explorations in human-robotic musical improvisation. In: Ninth artificial intelligence and interactive digital entertainment conference

    Google Scholar 

  • Beck A, Hiolle A, Mazel A, Cañamero L (2010) Interpretation of emotional body language displayed by robots. In: Proceedings of the 3rd international workshop on affective interaction in natural environments, pp 37–42

    Google Scholar 

  • Becker-Asano C, Kanda T, Ishi C, Ishiguro H (2011) Studying laughter in combination with two humanoid robots. AI & Soc 26(3):291–300

    Article  Google Scholar 

  • Becker-Asano C, Ishiguro H (2009) Laughter in social robotics-no laughing matter. In: Intl. workshop on social intelligence design. Citeseer, pp 287–300

    Google Scholar 

  • Bellona J, Bai L, Dahl L, LaViers A (2017) Empirically informed sound synthesis application for enhancing the perception of expressive robotic movement. In: Proceedings of the 23rd international conference on auditory display—ICAD 2017. The International Community for Auditory Display, University Park Campus, pp 73–80. https://doi.org/10.21785/icad2017.049

  • Belpaeme T, Baxter P, Read R, Wood R, Cuayáhuitl H, Kiefer B, Racioppa S, Kruijff-Korbayová I, Athanasopoulos G, Enescu V et al (2013) Multimodal child-robot interaction: building social bonds. J Hum Robot Interact 1(2):33–53

    Article  Google Scholar 

  • Berglund B, Hassmen P, Job RS (1996) Sources and effects of low frequency noise. J Acoust Soc Am 99(5):2985–3002

    Article  Google Scholar 

  • Bethel CL, Murphy RR (2006) Auditory and other non-verbal expressions of affect for robots. In: AAAI fall symposium: aurally informed performance, pp 1–5

    Google Scholar 

  • Blattner M, Sumikawa D, Greenberg R (1989) Earcons and icons: their structure and common design principles. Hum Comput Interact 4(1):11–44 (1989). https://doi.org/10.1207/s15327051hci0401_1. Accessed 24 Sept 2019

  • Bramas B, Kim YM, Kwon, DS (2008) Design of a sound system to increase emotional expression impact in human-robot interaction. In: 2008 international conference on control, automation and systems. IEEE, pp 2732–2737

    Google Scholar 

  • Breazeal CL (2000) Sociable machines: expressive social exchange between humans and robots. PhD Thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Breazeal CL (2004) Designing sociable robots. MIT Press

    Google Scholar 

  • Breazeal C, Kidd CD, Thomaz AL, Hoffman G, Berlin M (2005) Effects of nonverbal communication on efficiency and robustness in human-robot teamwork. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Edmonton, Alta., Canada, pp 708–713. https://doi.org/10.1109/IROS.2005.1545011

  • Breazeal C, Dautenhahn K, Kanda T (2016) Social robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1935–1972. https://doi.org/10.1007/978-3-319-32552-172

  • Bretan M, Cicconet M, Nikolaidis R, Weinberg G (2012) Developing and composing for a robotic musician using different modes of interaction. In: ICMC

    Google Scholar 

  • Bretan M, Weinberg G (2016) A survey of robotic musicianship. Commun ACM 59(5):100–109

    Article  Google Scholar 

  • Brock DP, Martinson E (2006) Using the concept of auditory perspective taking to improve robotic speech presentations for individual human listeners. In: AAAI fall symposium: aurally informed performance, pp 11–15

    Google Scholar 

  • Burkhardt F, Sendlmeier WF (2000) Verification of acoustical correlates of emotional speech using formant-synthesis. In: ISCA tutorial and research workshop (ITRW) on speech and emotion

    Google Scholar 

  • Cahn JE (1990) The generation of affect in synthesized speech. J Am Voice I/o Soc 8(1):1–1

    MathSciNet  Google Scholar 

  • Cain R, Jennings P, Poxon J (2013) The development and application of the emotional dimensions of a soundscape. Appl Acoust 74(2):232–239. https://doi.org/10.1016/j.apacoust.2011.11.006

    Article  Google Scholar 

  • Cha E, Cha E, Kim Y, Fong T, Matarić MJ (2018b) A survey of nonverbal signaling methods for non-humanoid Robots. Found Trends in Robot 6(4):211–323. https://doi.org/10.1561/2300000057

    Article  Google Scholar 

  • Cha E, Mataric M (2016) Using nonverbal signals to request help during human-robot collaboration. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Daejeon, South Korea, pp 5070–5076. https://doi.org/10.1109/IROS.2016.7759744

  • Cha E, Fitter NT, Kim Y, Fong T, Matarić MJ (2018a) Effects of robot sound on auditory localization in human-robot collaboration. In: Proceedings of the 2018a ACM/IEEE international conference on human-robot interaction—HRI ’18. ACM Press, Chicago, IL, USA, pp 434–442. https://doi.org/10.1145/3171221.3171285

  • Chadefaux D, Le Carrou JL, Vitrani MA, Billout S, Quartier L (2012) Harp plucking robotic finger. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 4886–4891

    Google Scholar 

  • Chang RC-S, Lu H-P, Yang P (2018) Stereotypes or golden rules? Exploring likable voice traits of social robots as active aging companions for tech-savvy baby boomers in Taiwan. Comput Hum Behav 84:194–210. https://doi.org/10.1016/j.chb.2018.02.025

    Article  Google Scholar 

  • Chomsky N (1956) Three models for the description of language. IRE Trans Inf Theory 2(3):113–124

    Article  MATH  Google Scholar 

  • Cicconet M, Bretan M, Weinberg G (2013) Human-robot percussion ensemble: Anticipation on the basis of visual cues. IEEE Robot Autom Mag 20(4):105–110

    Article  Google Scholar 

  • Connell J (2018) Extensible grounding of speech for robot instruction. arXiv preprint arXiv:1807.11838

  • Cosentino S, Takanishi A (2021) Human–robot musical interaction. In: handbook of artificial intelligence for music. Springer, Heidelberg, pp 799–822

    Google Scholar 

  • D’Mello S, McCauley L, Markham J (2005) A mechanism for human-robot interaction through informal voice commands. In: ROMAN 2005. IEEE international workshop on robot and human interactive communication. IEEE, pp 184–189

    Google Scholar 

  • Dahl L, Bellona J, Bai L, LaViers A (2017) Data-driven design of sound for enhancing the perception of expressive robotic movement. In: Proceedings of the 4th international conference on movement computing—MOCO ’17. ACM Press, London, United Kingdom, pp 1–8. https://doi.org/10.1145/3077981.3078047

  • Danielsson A, Landstrom Ü (1985) Blood pressure changes in man during infrasonic exposure: an experimental study. Acta Med Scand 217(5):531–535

    Article  Google Scholar 

  • Dannenberg RB, Brown B, Zeglin G, Lupish R (2005) McBlare: a robotic bagpipe player. In: Proceedings of the 2005 conference on new interfaces for musical expression. National University of Singapore, pp 80–84

    Google Scholar 

  • Davies A, Crosby A (2016) Compressorhead: the robot band and its transmedia storyworld. In: Koh JTKV, Dunstan BJ, Silvera-Tawil D, Velonaki M (eds) Cultural robotics. Springer, Cham, pp 175–189

    Chapter  Google Scholar 

  • Dingler T, Lindsay J, Walker BN (2008) Learnabiltiy of sound cues for environmental features: auditory icons, earcons, spearcons, and speech. In: Proceedings of the 14th international conference on auditory display. Paris, France, June 24–27

    Google Scholar 

  • Esnaola U, Smithers T (2005) MiReLa: A musical robot. In: 2005 International symposium on computational intelligence in robotics and automation. IEEE, pp 67–72

    Google Scholar 

  • Evans MJ, Tempest W (1972) Some effects of infrasonic noise in transportation. J Sound Vib 22(1):19–24

    Article  Google Scholar 

  • Eyssel F, Kuchenbrandt D, Bobinger S (2012) ‘If you sound like me, you must be more human’: on the interplay of robot and user features on human-robot acceptance and anthropomorphism, vol 2

    Google Scholar 

  • Fernald A, Mazzie C (1991) Prosody and focus in speech to infants and adults. Dev Psychol 27(2):209

    Article  Google Scholar 

  • Fernald A, Taeschner T, Dunn J, Papousek M, de Boysson Bardies B, Fukui I (1989) A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. J Child Lang 16(3):477–501

    Article  Google Scholar 

  • Ferrand D, Vergez C (2008) Blowing machine for wind musical instrument: toward a real-time control of the blowing pressure. In: 2008 16th Mediterranean conference on control and automation. IEEE, pp 1562–1567

    Google Scholar 

  • Fischer K, Niebuhr O, Jensen LC, Bodenhagen L (2019) Speech melody matters—how robots profit from using charismatic speech. ACM Trans Hum-Robot Interact (THRI) 9(1):1–21

    Google Scholar 

  • Forlizzi J, Battarbee K (2004) Understanding experience in interactive systems. In: Proceedings of the 2004 conference on designing interactive systems processes, practices, methods, and techniques—DIS ’04. ACM Press, Cambridge, MA, USA, p 261. https://doi.org/10.1145/1013115.1013152

  • Frid E, Bresin R (2021) Perceptual evaluation of blended sonification of mechanical robot sounds produced by emotionally expressive gestures: augmenting consequential sounds to improve non-verbal robot communication. Int J Soc Robot, pp 1–16

    Google Scholar 

  • Frid E, Bresin R, Alexanderson S (2018) Perception of mechanical sounds inherent to expressive gestures of a nao robot-implications for movement sonification of humanoids. In: Sound and music computing

    Google Scholar 

  • Friend M (2000) Developmental changes in sensitivity to vocal paralanguage. Dev Sci 3(2):148–162

    Article  Google Scholar 

  • Fujita M, Sabe K, Kuroki Y, Ishida T, Doi TT (2005) SDR-4X II: A small humanoid as an entertainer in home environment. In: robotics research. The eleventh international symposium. Springer, Heidelberg, pp 355–364

    Google Scholar 

  • Gaver W (1986) Auditory icons: using sound in computer interfaces. Hum-Comput Interact 2(2):167–177. https://doi.org/10.1207/s15327051hci0202

  • Geist MS (2013) MR-808 drum robot

    Google Scholar 

  • Geist MS (2014) Glitch robot

    Google Scholar 

  • Goodrich MA, Schultz AC et al (2008) Human-robot interaction: a survey. Found Trends Hum Comput Interact 1(3):203–275

    Article  MATH  Google Scholar 

  • Gorostiza JF, Salichs MA (2011) End-user programming of a social robot by dialog. Robot Auton Syst 59(12):1102–1114

    Article  Google Scholar 

  • Gouaillier D, Hugel V, Blazevic P Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: 2009 IEEE international conference on robotics and automation. IEEE, pp 769–774

    Google Scholar 

  • Hallahan WI (1995) DECtalk software: text-to-speech technology and implementation. Digit Tech J 7(4):5–19

    Google Scholar 

  • Harris CS, Johnson DL (1978) Effects of infrasound on cognitive performance. Aviation, space, and environmental medicine

    Google Scholar 

  • Hermann T, Hunt A, Neuhoff JG (2011) The sonification handbook. Logos Verlag Berlin

    Google Scholar 

  • Hespanhol L, Tomitsch M (2012) Designing for collective participation with media installations in public spaces. In: Proceedings of the 4th media architecture biennale conference on participation—MAB ’12. ACM Press, Aarhus, Denmark, pp 33–42. https://doi.org/10.1145/2421076. 2421082

  • Hoffman G, Bauman S, Vanunu K (2016) Robotic experience companionship in music listening and video watching. Pers Ubiquit Comput 20(1):51–63. https://doi.org/10.1007/s00779-015-0897-1

    Article  Google Scholar 

  • Hoffman G, Ju W (2014) Designing robots with movement in mind. J Hum Robot Interact 3(1):89. https://doi.org/10.5898/JHRI.3.1.Hoffman

  • Hoffman G, Vanunu K (2013) Effects of robotic companionship on music enjoyment and agent perception. In: 2013 8th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, Tokyo, Japan, pp317–324. https://doi.org/10.1109/HRI.2013.6483605

  • Holzapfel H, Gieselmann P (2004) A way out of dead end situations in dialogue systems for human-robot interaction. In: 4th IEEE/RAS international conference on humanoid robots, vol. 1. IEEE, pp 184–195

    Google Scholar 

  • Hornecker E, Stifter M (2006) Learning from interactive museum installations about interaction design for public settings. In: Proceedings of the 20th conference of the computer-human interaction special interest group (CHISIG) of Australia on computer-human interaction: design: activities, artefacts and environments—OZCHI ’06. ACM Press, Sydney, Australia, p 135. https://doi.org/10.1145/1228175.1228201

  • Hoyer R, Bartetzki A, Kirchner D, Witsch A, van de Molengraft M, Geihs K (2013) Giving robots a voice: a kineto-acoustic project. In: International conference on arts and technology. Springer, Heidelberg, pp 41–48

    Google Scholar 

  • Hu J, Le D, Funk M, Wang F, Rauterberg M (2013) Attractiveness of an interactive public art installation. In: International conference on distributed, ambient, and pervasive interactions. Springer, Heidelberg, pp 430–438

    Google Scholar 

  • Ikeuchi K, Fukumoto M, Lee JH, Kravitz JL, Baumert DW (2020) Noise reduction in robot human communication. Google Patents

    Google Scholar 

  • Inoue K, Wada K, Ito Y (2008) Effective application of Paro: Seal type robots for disabled people in according to ideas of occupational therapists. In: International conference on computers for handicapped persons. Springer, Heidelberg, pp 1321–1324

    Google Scholar 

  • Javed H, Jeon M, Park CH (2018) Adaptive framework for emotional engagement in child-robot interactions for autism interventions. In: 2018 15th International conference on ubiquitous robots (UR). IEEE, pp 396–400

    Google Scholar 

  • Jee E-S, Jeong Y-J, Kim CH, Kobayashi H (2010) Sound design for emotion and intention expression of socially interactive robots. Intel Serv Robot 3(3):199–206. https://doi.org/10.1007/s11370-010-0070-7

    Article  Google Scholar 

  • Jee ES, Park SY, Kim CH, Kobayashi H (2009) Composition of musical sound to express robot’s emotion with intensity and synchronized expression with robot’s behavior. In: RO-MAN 2009—The 18th IEEE international symposium on robot and human interactive communication. IEEE, Toyama, Japan, pp 369–374. https://doi.org/10.1109/ROMAN.2009.5326258

  • Jee ES, Kim CH, Park SY, Lee KW (2007) Composition of musical sound expressing an emotion of robot based on musical factors. In: RO-MAN 2007—The 16th IEEE international symposium on robot and human interactive communication. IEEE, Jeju, South Korea, pp 637–641. https://doi.org/10.1109/ROMAN.2007.4415161

  • Johannsen G (2001) Auditory displays in human-machine interfaces of mobile robots for non-speech communication with humans. J Intell Rob Syst 32(2):161–169

    Article  MATH  Google Scholar 

  • Johannsen G (2004) Auditory displays in human-machine interfaces. Proc IEEE 92(4):742–758

    Article  Google Scholar 

  • Johannsen G (2002) Auditory display of directions and states for mobile systems. Georgia Institute of Technology

    Google Scholar 

  • Johnson WF, Emde RN, Scherer KR, Klinnert MD (1986) Recognition of emotion from vocal cues. Arch Gen Psychiatry 43(3):280–283

    Article  Google Scholar 

  • Jordà S (2002) Afasia: The ultimate homeric one-man-multimedia-band. In: NIME, pp 132–137

    Google Scholar 

  • Jousmäki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8(6):190–191

    Google Scholar 

  • Kac E (1997) Foundation and development of robotic art. Art Journal 56(3):60–67

    Article  Google Scholar 

  • Kadish D (2019) Robophony: A new voice in the soundscape. In: RE: SOUND 2019–8th international conference on media art, science, and technology 8, pp 243–252

    Google Scholar 

  • Kapur A (2005) A history of robotic musical instruments. In: ICMC. Citeseer

    Google Scholar 

  • Kapur A (2011) Multimodal techniques for human/robot interaction. In: Musical robots and interactive multimodal systems. Springer, Heidelberg, pp 215–232

    Google Scholar 

  • Kapur A, Murphy JW, Carnegie DA (2012) Kritaanjali: a robotic harmonium for performance, pedogogy and research. In: NIME

    Google Scholar 

  • Kato I, Ohteru S, Shirai K, Matsushima T, Narita S, Sugano S, Kobayashi T, Fujisawa E (1987) The robot musician ‘wabot-2’(waseda robot-2). Robotics 3(2):143–155

    Article  Google Scholar 

  • Knoll MA, Uther M, Costall A (2009) Effects of low-pass filtering on the judgment of vocal affect in speech directed to infants, adults and foreigners. Speech Commun 51(3):210–216

    Article  Google Scholar 

  • Kobayashi T, Fujie S (2013) Conversational robots: an approach to conversation protocol issues that utilizes the paralinguistic information available in a robot-human setting. Acoust Sci Technol 34(2):64–72

    Article  Google Scholar 

  • Komatsu T (2005) Toward making humans empathize with artificial agents by means of subtle expressions. In: International conference on affective computing and intelligent interaction. Springer, Heidelberg, pp 458–465

    Google Scholar 

  • Komatsu T, Yamada S, Kobayashi K, Funakoshi K, Nakano M (2010) Artificial subtle expressions: intuitive notification methodology of artifacts. In: Proceedings of the 28th international conference on human factors in computing systems—CHI ’10. ACM Press, Atlanta, Georgia, USA, p 1941. https://doi.org/10.1145/1753326.1753619

  • Komatsu T, Kobayashi K, Yamada S, Funakoshi K, Nakano M (2018) Vibrational artificial subtle expressions: conveying system’s confidence level to users by means of smartphone vibration. In: Proceedings of the 2018 CHI conference on human factors in computing systems—CHI ’18. ACM Press, Montreal QC, Canada, pp 1–9. https://doi.org/10.1145/3173574.3174052

  • Komatsu T, Yamada S (2011) How does the agents’ appearance affect users’ interpretation of the agents’ attitudes: Experimental investigation on expressing the same artificial sounds from agents with different appearances. Int J Hum Comput Interact 27(3):260–279. https://doi.org/10.1080/10447318.2011.537209

    Article  Google Scholar 

  • Korcsok B, Faragó T, Ferdinandy B, Miklósi, Korondi P, Gácsi M (2020) Artificial sounds following biological rules: a novel approach for non-verbal communication in HRI. Sci Rep 10(1):1–13

    Google Scholar 

  • Kozima H, Michalowski MP, Nakagawa C (2009) Keepon. Int J Soc Robot 1(1):3–18

    Article  Google Scholar 

  • Krzyz̈aniak M (20121) Musical robot swarms, timing, and equilibria. J New Music Res:1–19

    Google Scholar 

  • Lageat T, Czellar S, Laurent G (2003) Engineering hedonic attributes to generate perceptions of luxury: consumer perception of an everyday sound. Mark Lett 14(2):97–109

    Article  Google Scholar 

  • Latupeirissa AB, Frid E, Bresin R (2019) Sonic characteristics of robots in films. In: Sound and music computing conference, pp 1–6

    Google Scholar 

  • Lee MK, Kiesler S, Forlizzi J, Srinivasa S, Rybski P (2010) Gracefully mitigating breakdowns in robotic services. In: 2010 5th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, pp 203– 210

    Google Scholar 

  • Lin HS, Shen YT, Lin TH, Lin PC (2014) Disco lamp: An interactive robot lamp. In: 2014 IEEE international conference on automation science and engineering (CASE). IEEE, pp 1214–1219

    Google Scholar 

  • Logan-Greene R (2011) Submersions I, University of Washington

    Google Scholar 

  • Loupa G (2020) Influence of noise on patient recovery. Curr Pollut Rep:1–7

    Google Scholar 

  • Maes L, Raes G-W, Rogers T (2011) The man and machine robot orchestra at logos. Comput Music J 35(4):28–48

    Article  Google Scholar 

  • Martin J, Gleeson C (2011) The sound of shadows: Peter Vogel. In: Sounding out the museum: Peter Vogel retrospective exhibition

    Google Scholar 

  • McColl D, Nejat G (2014) Recognizing emotional body language displayed by a human-like social robot. Int J Soc Robot 6(2):261–280

    Article  Google Scholar 

  • McNaught W (1892) The history and uses of the sol-fa syllables. Proc Music Assoc 19:35–51

    Article  Google Scholar 

  • Meanza B (2013) Cicadas

    Google Scholar 

  • Meyer LB (2008) Emotion and meaning in music. University of Chicago Press

    Google Scholar 

  • Michalowski MP (2010) Rhythmic human-robot social interaction. Carnegie Mellon University

    Google Scholar 

  • Michalowski MP, Sabanovic S, Kozima H (2007) A dancing robot for rhythmic social interaction. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 89–96

    Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42(1):135–159

    Article  Google Scholar 

  • Miklósi A, Korondi P, Matellán V, Gácsi M (2017) Ethorobotics: a new approach to human-robot relationship. Front Psychol 8:958

    Article  Google Scholar 

  • Moore RK (2014) Spoken language processing: time to look outside? In: International conference on statistical language and speech processing. Springer, Heidelberg, pp 21–36

    Google Scholar 

  • Moore RK (2017) Appropriate voices for artefacts: some key insights. http://vihar-2017.vihar.org/assets/papers/VIHAR-2017_paper_8.pdf

  • Moore D, Tennent H, Martelaro N, Ju W (2017) Making noise intentional: a study of servo sound perception. In: Proceedings of the 2017 ACM/IEEE international conference on human-robot interaction—HRI ’17. ACM Press, Vienna, Austria, pp 12–21

    Google Scholar 

  • Moore D, Dahl T, Varela P, Ju W, Næs T, Berget I (2019) Unintended consonances: methods to understand robot motor sound perception. In: Proceedings of the 2019 CHI conference on human factors in computing systems—CHI ’19. ACM Press, Glasgow, Scotland UK, pp 1–12. https://doi.org/10.1145/3290605.330073

  • Mozos OM, Jensfelt P, Zender H, Kruijff GJM, Burgard W (2007) From labels to semantics: an integrated system for conceptual spatial representations of indoor environments for mobile robots. In: ICRA workshop: semantic information in robotics. Citeseer

    Google Scholar 

  • Mubin O, Bartneck C, Feijs L (2009) What you say is not what you get: arguing for artificial languages instead of natural languages in human robot speech interaction. In: Proceedings of the spoken dialogue and human-robot interaction workshop at IEEE RoMan 2009, Toyama

    Google Scholar 

  • Nakagawa K, Shiomi M, Shinozawa K, Matsumura R, Ishiguro H, Hagita N (2013) Effect of robot’s whispering behavior on people’s motivation. Int J Soc Robot 5(1):5–16

    Article  Google Scholar 

  • Németh G, Olaszy G, Csapó TG (2011) Spemoticons: text to speech based emotional auditory cues. Int Commun Auditory Display

    Google Scholar 

  • Olaszy G, Németh G, Olaszi P, Kiss G, Zainkó C, Gordos G (2000) Profivox—A Hungarian text-to-speech system for telecommunications applications. Int J Speech Technol 3(3–4):201–215

    Article  MATH  Google Scholar 

  • Otsuka T, Nakadai K, Takahashi T, Komatani K, Ogata T, Okuno HG (2009) Voice quality manipulation for humanoid robots consistent with their head movements. In: 2009 9th IEEE-RAS international conference on humanoid robots. IEEE, Paris, France, pp 405–410. https://doi.org/10.1109/ICHR.2009.5379569T

  • Oudeyer P-Y (2003) The production and recognition of emotions in speech: features and algorithms. Int J Hum Comput Stud 59(1–2):157–183

    Google Scholar 

  • Özcan E, van Egmond R (2006) Product sound design and application: an overview. In: Proceedings of the fifth international conference on design and emotion, Gothenburg

    Google Scholar 

  • Pan Y, Kim MG, Suzuki K (2010) A robot musician interacting with a human partner through initiative exchange. In: NIME, pp 166–169

    Google Scholar 

  • Peng H, Zhou C, Hu H, Chao F, Li J (2015) Robotic dance in social robotics—a taxonomy. IEEE Trans Hum Mach Syst 45(3):281–293

    Article  Google Scholar 

  • Pinker S (1989) Language acquisition. Found Cognitive Sci:359–400

    Google Scholar 

  • Prendinger H, Becker C, Ishizuka M (2006) A study in users’ physiological response to an empathic interface agent. Int J Humanoid Rob 3(03):371–391

    Article  Google Scholar 

  • Read R, Belpaeme T (2012) How to use non-linguistic utterances to convey emotion in child-robot interaction. In: Proceedings of the seventh annual ACM/IEEE international conference on human robot interaction—HRI ’12. ACM Press, Boston, Massachusetts, USA, p 219 https://doi.org/10.1145/2157689.2157764

  • Read R, Belpaeme T (2014) Situational context directs how people affectively interpret robotic non-linguistic utterances. In: Proceedings of the 2014 ACM/IEEE international conference on human-robot interaction—HRI ’14. ACM Press, Bielefeld, Germany, pp 41–48. https://doi.org/10.1145/2559636.2559680

  • Read R, Belpaeme T (2016) People interpret robotic non-linguistic utterances categorically. Int J Soc Robot 8(1):31–50. https://doi.org/10.1007/s12369-015-0304-0

    Article  Google Scholar 

  • Remez RE, Rubin PE, Pisoni DB, Carrell TD (1981) Speech perception without traditional speech cues. Science 212(4497):947–949

    Article  Google Scholar 

  • Rinaldo KE (1998) Technology recapitulates phylogeny: artificial life art. Leonardo:371–376

    Google Scholar 

  • Ritschel H, Aslan I, Mertes S, Seiderer A, André E (2019) Personalized synthesis of intentional and emotional non-verbal sounds for social robots. In: 2019 8th international conference on affective computing and intelligent interaction (ACII). IEEE, pp 1–7

    Google Scholar 

  • Robinson FA, Bown O, Velonaki M (2022) Designing sound for social robots: candidate design principles. Int J Soc Robot. https://doi.org/10.1007/s12369-022-00891-0

    Article  Google Scholar 

  • Robinson FA, Velonaki M, Bown O (2021) Smooth operator: tuning robot perception through artificial movement sound. In: Proceedings of the 2021 ACM/IEEE international conference on human-robot interaction, pp 53–62

    Google Scholar 

  • Rossi S, Dell’Aquila E, Bucci B (2019) Evaluating the emotional valence of affective sounds for child-robot interaction. In: International conference on social robotics. Springer, Heidelberg, pp 505–514

    Google Scholar 

  • Roussou M (1999) High-end interactive media in the museum. In: ACM SIGGRAPH 99 conference abstracts and applications on—SIGGRAPH ’99. ACM Press, Los Angeles, California, USA, pp 59–62. https://doi.org/10.1145/311625.311682

  • Savery R, Zahray L, Weinberg G (2020) Emotional musical prosody for the enhancement of trust in robotic arm communication. arXiv preprint arXiv:2009.09048

  • Savery R, Rose R, Weinberg G (2019) Establishing human-robot trust through music-driven robotic emotion prosody and gesture. In: 2019 28th IEEE international conference on robot and human interactive communication (RO-MAN). IEEE, pp 1–7

    Google Scholar 

  • Savery R, Zahray L, Weinberg G (2020) Emotional musical prosody: validated vocal dataset for human robot interaction. The 2020 joint conference on AI music creativity (CSMC + MUME)

    Google Scholar 

  • Savery R, Zahray L, Weinberg G (2021) Shimon sings: robotic musicianship finds its voice. In: Handbook of artificial intelligence for music. Springer, Heidelberg, pp 823–847

    Google Scholar 

  • Sayin E, Krishna A, Ardelet C, Briand Decr´e G, Goudey A (2015) Sound and safe: the effect of ambient sound on the perceived safety of public spaces. Int J Res Mark 32(4):343–353. https://doi.org/10.1016/j.ijresmar.2015.06.002

  • Scherer KR (1971) Randomized splicing: a note on a simple technique for masking speech content. J Exp Res Pers

    Google Scholar 

  • Scherer KR (1985) Vocal affect signalling: a comparative approach. Adv Study Behav 15:189–244

    Article  Google Scholar 

  • Scherer KR, Koivumaki J, Rosenthal R (1972) Minimal cues in the vocal communication of affect: judging emotions from content-masked speech. J Psycholinguist Res 1(3):269–285

    Article  Google Scholar 

  • Scherer KR (1982) Methods of research on vocal communication: paradigms and parameters. Handbook of methods in nonverbal behavior research, pp 136–198

    Google Scholar 

  • Scherer KR (1994) Affect bursts. Emotions: essays on emotion theory, vol 161

    Google Scholar 

  • Schroder M (2003) Experimental study of affect bursts. Speech Commun 40(1–2):99–116

    Article  MATH  Google Scholar 

  • Schroder M, Bevacqua E, Cowie R, Eyben F, Gunes H, Heylen D, Ter Maat M, McKeown G, Pammi S, Pantic M et al (2011) Building autonomous sensitive artificial listeners. IEEE Trans Affect Comput 3(2):165–183

    Article  Google Scholar 

  • Schroder M, Burkhardt F, Krstulovic S (2010) Synthesis of emotional speech. Blueprint for affective computing, pp 222–231

    Google Scholar 

  • Schuller B, Batliner A (2013) Computational paralinguistics: emotion, affect and personality in speech and language processing. Wiley, New York

    Google Scholar 

  • Schwenk M, Arras KO (2014) R2-D2 reloaded: a flexible sound synthesis system for sonic human-robot interaction design. In: The 23rd IEEE international symposium on robot and human interactive communication. IEEE, Edinburgh, UK, pp 161–167. https://doi.org/10.1109/ROMAN.2014.6926247

  • Seo JH, Yang JY, Kim J, Kwon DS (2013) Autonomous humanoid robot dance generation system based on real-time music input. In: 2013 IEEE RO-MAN. IEEE, pp 204–209

    Google Scholar 

  • Shibuya K, Ideguchi H, Ikushima K (2012) Volume control by adjusting wrist moment of violin-playing robot. Int J Synth Emot (IJSE) 3(2):31–47

    Article  Google Scholar 

  • Shiwa T, Kanda T, Imai M, Ishiguro H, Hagita N (2009) How quickly should a communication robot respond? Delaying strategies and habituation effects. Int J Soc Robot 1(2):141–155

    Article  Google Scholar 

  • Singer E, Feddersen J, Redmon C, Bowen B (2004) LEMUR’s musical robots. In: Proceedings of the 2004 conference on new interfaces for musical expression, pp 181–184

    Google Scholar 

  • Snel J, Cullen C (2013) Judging emotion from low-pass filtered naturalistic emotional speech. In: 2013 humaine association conference on affective computing and intelligent interaction. IEEE, pp 336–342

    Google Scholar 

  • Solis J, Chida K, Isoda S, Suefuji K, Arino C, Takanishi A (2005) The anthropomorphic flutist robot WF-4R: from mechanical to perceptual improvements. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 64–69

    Google Scholar 

  • Solis J, Takanishi A, Hashimoto K (2010) Development of an anthropomorphic saxophone-playing robot. In: Brain, body and machine. Springer, Heidelberg, pp 175–186

    Google Scholar 

  • Song S, Yamada S (2017) Expressing emotions through color, sound, and vibration with an appearance-constrained social robot. In: Proceedings of the 2017 ACM/IEEE international conference on human-robot interaction—HRI ’17. ACM Press, Vienna, Austria, pp 2–11. https://doi.org/10.1145/2909824.3020239

  • Spence C, Wang Q (2015) Sensory expectations elicited by the sounds of opening the packaging and pouring a beverage. Flavour 4(1):35. https://doi.org/10.1186/s13411-015-0044-y

    Article  Google Scholar 

  • Suzuki Y (2014) Looks like music

    Google Scholar 

  • Tennent H, Moore D, Jung M, Ju W (2017) Good vibrations: How consequential sounds affect perception of robotic arms. In: 2017 26th IEEE international symposium on robot and human interactive communication (RO-MAN). IEEE, Lisbon, pp 928–935. https://doi.org/10.1109/ROMAN.2017.8172414

  • Teshigawara M, Amir N, Amir O, Wlosko E, Avivi M (2007) Effects of random splicing on listeners’ perceptions. In: ICPhS

    Google Scholar 

  • Thiessen R, Rea DJ, Garcha DS, Cheng C, Young JE (2019) Infrasound for HRI: A robot using low-frequency vibrations to impact how people perceive its actions. In: 2019 14th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, pp 11–18

    Google Scholar 

  • Trimpin. Trimpin (2011) Contraptions for art and sound. University of Washington Press

    Google Scholar 

  • Trovato G, Do M, Terlemez Mandery C, Ishii H, Bianchi-Berthouze N, Asfour T, Takanishi A (2016) Is hugging a robot weird? Investigating the influence of robot appearance on users’ perception of hugging. In: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids). IEEE, pp 318–323

    Google Scholar 

  • Trovato G, Paredes R, Balvin J, Cuellar F, Thomsen NB, Bech S, Tan ZH (2018) The sound or silence: investigating the influence of robot noise on proxemics. In: 2018 27th IEEE international symposium on robot and human interactive communication (RO-MAN). IEEE, Nanjing, pp 713–718. https://doi.org/10.1109/ROMAN.2018.8525795

  • Tünnermann R, Hammerschmidt J, Hermann T (2013) Blended sonification—sonification for casual information interaction. Georgia Institute of Technology

    Google Scholar 

  • Urbanowicz K, Nyka L (2016) Media architecture and interactive art installations stimulating human involvement and activities in public spaces. In: CBU international conference proceedings, vol 4, pp 591–596

    Google Scholar 

  • Van Egmond R (2008) The experience of product sounds. In: Product experience. Elsevier, pp 69–89

    Google Scholar 

  • Vindriis R, Carnegie D (2016) Strum-Bot–An overview of a strumming guitar robot. In: Proceedings of the international conference on new interfaces for musical expression conference, Brisbane, pp 146–151

    Google Scholar 

  • Vircikova M, Sincak P (2010) Artificial intelligence in humanoid systems

    Google Scholar 

  • Vircíková M, Sinčák P (2010) Dance choreography design of humanoid robots using interactive evolutionary computation. In: 3rd workshop for young researchers: human friendly robotics for young researchers

    Google Scholar 

  • Vircíková M, Fedor Z, Sinčák P (2011) Design of verbal and non-verbal human-robot interactive system. In: 2011 11th IEEE-RAS international conference on humanoid robots. IEEE, pp 87–92

    Google Scholar 

  • Vogel P (1979) Sound wall

    Google Scholar 

  • Walker BN, Lindsay J, Nance A, Nakano Y, Palladino DK, Dingler T, Jeon M (2013) Spearcons (speech-based earcons) improve navigation performance in advanced auditory menus. Hum Factors 55(1):157–182

    Article  Google Scholar 

  • Walters ML, Syrdal DS, Koay KL, Dautenhahn K, Boekhorst R (2008) Human approach distances to a mechanical-looking robot with different robot voice styles. In: RO-MAN 2008—The 17th IEEE international symposium on robot and human interactive communication. IEEE, Munich, Germany, pp 707—712. https://doi.org/10.1109/ROMAN. 2008.4600750

  • Ward N (1996) Using prosodic clues to decide when to produce back-channel utterances. In: Proceeding of fourth international conference on spoken language processing. ICSLP’96, vol 3. IEEE, pp 1728–1731

    Google Scholar 

  • Watanabe K, Shimojo S (2001) When sound affects vision: effects of auditory grouping on visual motion perception. Psychol Sci 12(2):109–116. https://doi.org/10.1111/1467-9280.00319

    Article  Google Scholar 

  • Weinberg G, Driscoll S (2006) Toward robotic musicianship. Comput Music J 30(4):28–45

    Article  Google Scholar 

  • Weinberg G, Bretan M, Hoffman G, Driscoll S (2020) Robotic musicianship: embodied artificial creativity and mechatronic musical expression, vol 8. Springer, Heidelberg

    Google Scholar 

  • Weinberg G, Driscoll S (2007) The design of a perceptual and improvisational robotic marimba player. In: RO-MAN 2007-The 16th IEEE international symposium on robot and human interactive communication. IEEE, pp 769–774

    Google Scholar 

  • Williamson MM (1999) Robot arm control exploiting natural dynamics. PhD Thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Wolford J, Gabaldon B, Rivas J, Min B (2019) Condition-based robot audio techniques. Google Patents

    Google Scholar 

  • Woolf S, Bech T (2002) Experiments with reactive robotic sound sculptures. In: ALife VIII: workshop proceedings 2002 P2, vol 3

    Google Scholar 

  • Yilmazyildiz S, Read R, Belpeame T, Verhelst W (2016) Review of semantic-free utterances in social human-robot interaction. Int J Hum Comput Interact 32(1):63–85. https://doi.org/10.1080/10447318.2015.1093856

    Article  Google Scholar 

  • Yoshida S, Sakamoto D, Sugiura Y, Inami M, Igarashi T (2012) Robo-Jockey: robotic dance entertainment for all. In: SIGGRAPH Asia 2012 emerging technologies, pp 1–2

    Google Scholar 

  • Zahray L, Savery R, Syrkett L, Weinberg G (2020) Robot gesture sonification to enhance awareness of robot status and enjoyment of interaction. In: 2020 29th IEEE international conference on robot and human interactive communication (RO-MAN). IEEE, pp 978–985

    Google Scholar 

  • Zhang A, Malhotra M, Matsuoka Y (2011) Musical piano performance by the ACT hand. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 3536–3541

    Google Scholar 

  • Zhang R, Jeon M, Park CH, Howard A (2015) Robotic sonification for promoting emotional and social interactions of children with ASD. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts—HRI’15 extended abstracts. ACM Press, Portland, Oregon, USA, pp 111–112. https://doi.org/10.1145/2701973.2702033

  • Zhang R, Barnes J, Ryan J, Jeon M, Park CH, Howard A (2016) Musical robots for children with ASD using a client-server architecture. Int Conf Auditory Display. https://digitalcommons.mtu.edu/cls-fp/43

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Anthony Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robinson, F.A., Bown, O., Velonaki, M. (2023). The Robot Soundscape. In: Dunstan, B.J., Koh, J.T.K.V., Turnbull Tillman, D., Brown, S.A. (eds) Cultural Robotics: Social Robots and Their Emergent Cultural Ecologies. Springer Series on Cultural Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-28138-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28138-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28137-2

  • Online ISBN: 978-3-031-28138-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics