Skip to main content

Planning Principles in Distraction Osteogenesis Including Simultaneous CAD/CAM-Based Facial Reconstructions

  • Chapter
  • First Online:
Fundamentals of Craniofacial Malformations

Abstract

Large and complex facial reconstructions that become necessary as a result of congenital defects present great challenges to surgeons. Distraction osteogenesis (DO) and orthognathic surgery (OGS) are important procedures in the treatment of craniofacial deformities. While DO shows good results regardless of age, OGS is indicated only in adulthood. Bone movements through DO procedures allow the reconstruction of a normal skeletal anatomy even when large bone movements are needed. DO procedures have limited capabilities to correct soft tissue deficiencies, but such complex soft tissue changes are necessary to generate a harmonious and symmetrical appearance, especially in most syndromal patients. Many different autologous and allogeneic substitutes have been designed to augment soft tissues. Polyetheretherketone (PEEK) represents an excellent biomaterial in this context, offering the best material properties for long-term use. The technical implementation of complex facial reconstruction using DO and PEEK implants enables the correction of even severe malformations. Virtual planning and execution tools allow nowadays the correction through a minor number of surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey LTJ, Cevidanes LH, Proffit WR. Stability and predictability of orthognathic surgery. Am J Orthod Dentofac Orthop. 2004;126(3):273–7.

    Article  Google Scholar 

  2. Bagheri SC, Jo C. Clinical review of Oral and maxillofacial surgery-E-book. Elsevier Health Sciences; 2013.

    Google Scholar 

  3. Diner PA, et al. Mandibular lengthening using intraoral distractors. Craniofacial distraction osteogenesis. St. Louis: Mosby; 2001. p. 247–55.

    Google Scholar 

  4. Van Strijen P, et al. Stability after distraction osteogenesis to lengthen the mandible: results in 50 patients. J Oral Maxillofac Surg. 2004;62(3):304–7.

    Article  PubMed  Google Scholar 

  5. Al-Daghreer S, Flores-Mir C, El-Bialy T. Long-term stability after craniofacial distraction osteogenesis. J Oral Maxillofac Surg. 2008;66(9):1812–9.

    Article  PubMed  Google Scholar 

  6. McCarthy JG, et al. The first decade of mandibular distraction: lessons we have learned. Plast Reconstr Surg. 2002;110(7):1704–13.

    Article  PubMed  Google Scholar 

  7. Shaw W, Mandall N, Mattick C. Ethical and scientific decision making in distraction osteogenesis. Cleft Palate Craniofac J. 2002;39(6):641–5.

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham SJ, Gilthorpe MS, Hunt NP. Are orthognathic patients different? Eur J Orthod. 2000;22(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  9. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;250:8–26.

    Article  Google Scholar 

  10. Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst. 1988;48(1):1–11.

    CAS  PubMed  Google Scholar 

  11. Meyer U, Kleinheinz J, Joos U. Biomechanical and clinical implications of distraction osteogenesis in craniofacial surgery. J Cranio-Maxillofac Surg. 2004;32(3):140–9.

    Article  Google Scholar 

  12. Kessler P, Neukam F, Wiltfang J. Effects of distraction forces and frequency of distraction on bony regeneration. Br J Oral Maxillofac Surg. 2005;43(5):392–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nogueira MP, et al. Nerve lesions associated with limb-lengthening. JBJS. 2003;85(8):1502–10.

    Article  Google Scholar 

  14. Meyer U, et al. Decreased expression of osteocalcin and osteonectin in relation to high strains and decreased mineralization in mandibular distraction osteogenesis. J Cranio-Maxillofac Surg. 1999;27(4):222–7.

    Article  CAS  Google Scholar 

  15. Meyer U, et al. The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg. 1999;57(11):1331–9.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer U, et al. Microstructural investigations of strain-related collagen mineralization. Br J Oral Maxillofac Surg. 2001;39(5):381–9.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer U, et al. Strain-related bone remodeling in distraction osteogenesis of the mandible. Plast Reconstr Surg. 1999;103(3):800–7.

    Article  CAS  PubMed  Google Scholar 

  18. Heggie AA, Kumar R, Shand JM. The role of distraction osteogenesis in the management of craniofacial syndromes. Ann Maxillofac Surg. 2013;3(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rachmiel A. Treatment of maxillary cleft palate: distraction osteogenesis versus orthognathic surgery—part one: maxillary distraction. J Oral Maxillofac Surg. 2007;65(4):753–7.

    Article  PubMed  Google Scholar 

  20. Cohen SR, Holmes RE. Internal Le fort III distraction with biodegradable devices. J Craniofac Surg. 2001;12(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  21. Shilo D, et al. Controlling the vector of distraction osteogenesis in the management of obstructive sleep apnea. Ann Maxillofac Surg. 2016;6(2):214.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tessier P. Autogenous bone grafts taken from the calvarium for facial and cranial applications. Clin Plast Surg. 1982;9(4):531–8.

    Article  CAS  PubMed  Google Scholar 

  23. Maas C, et al. Comparison of biomaterials for facial bone augmentation. Arch Otolaryngol Head Neck Surg. 1990;116(5):551–6.

    Article  CAS  PubMed  Google Scholar 

  24. Jockisch K, et al. Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res. 1992;26(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  25. Morrison C, et al. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16(13):987–92.

    Article  CAS  PubMed  Google Scholar 

  26. Wenz L, et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res. 1990;24(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  27. Toth JM, et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27(3):324–34.

    Article  CAS  PubMed  Google Scholar 

  28. Cho D-Y, et al. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51(6):1343–50.

    Article  PubMed  Google Scholar 

  29. Kim MM, Boahene KD, Byrne PJ. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Arch Facial Plast Surg. 2009;11:53.

    Article  PubMed  Google Scholar 

  30. Haleem A, Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Global Health. 2019;7(4):571–7.

    Article  Google Scholar 

  31. Scolozzi P, Martinez A, Jaques B. Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. J Craniofac Surg. 2007;18(1):224–8.

    Article  PubMed  Google Scholar 

  32. Pauwels R, et al. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224.

    Article  CAS  PubMed  Google Scholar 

  33. Liang X, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): Part I. On subjective image quality. Eur J Radiol. 2010;75(2):265–9.

    Article  PubMed  Google Scholar 

  34. Schulze R, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ho C-T, Lin H-H, Lo L-J. Intraoral scanning and setting up the digital final occlusion in three-dimensional planning of orthognathic surgery: its comparison with the dental model approach. Plast Reconstr Surg. 2019;143(5):1027e–36e.

    Article  CAS  PubMed  Google Scholar 

  36. Mangano F, et al. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):1–11.

    Article  Google Scholar 

  37. Zhao Y-J, Xiong Y-X, Wang Y. Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy. PLoS One. 2017;12(1):e0169402.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sobieraj MC, Kurtz SM, Rimnac CM. Notch sensitivity of PEEK in monotonic tension. Biomaterials. 2009;30(33):6485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panayotov IV, et al. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):1–11.

    Article  CAS  Google Scholar 

  40. Fan J, et al. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials. 2004;25(23):5363–73.

    Article  CAS  PubMed  Google Scholar 

  41. Ridwan-Pramana A, et al. Porous polyethylene implants in facial reconstruction: outcome and complications. J Cranio-Maxillofac Surg. 2015;43(8):1330–4.

    Article  Google Scholar 

  42. Baan F, et al. A new 3D tool for assessing the accuracy of bimaxillary surgery: the OrthoGnathicAnalyser. PLoS One. 2016;11(2):e0149625.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang N, et al. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):143–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerkfeld, V., Meyer, U. (2023). Planning Principles in Distraction Osteogenesis Including Simultaneous CAD/CAM-Based Facial Reconstructions. In: Meyer, U. (eds) Fundamentals of Craniofacial Malformations. Springer, Cham. https://doi.org/10.1007/978-3-031-28069-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28069-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28068-9

  • Online ISBN: 978-3-031-28069-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics