Skip to main content

Drug–Drug and Drug–Nutrients Interactions: From Theory to Clinical Relevance

  • Chapter
  • First Online:
Optimizing Pharmacotherapy in Older Patients

Part of the book series: Practical Issues in Geriatrics ((PIG))

  • 596 Accesses

Abstract

Several changes in pharmacokinetics (PK) and pharmacodynamics (PD) are associated with ageing, complicating therapeutic management in older patients. Furthermore, older patients often suffer from multiple chronic diseases generating prescription of a growing number of drugs. Age-related changes in PK/PD, polypharmacy and multimorbidity play an important role in the prevalence of drug–drug interactions (DDIs) and drug–nutrient interactions (DNIs) in older people, which increases the risk of reduced drug efficacy and adverse drug events.

This chapter first describes different mechanisms of DDIs and DNIs on a pharmacokinetic and pharmacodynamic level. Second, age-related changes in PK/PD are discussed, where changes in distribution, renal elimination and susceptibility to certain drug classes are of highest importance. Finally, this chapter provides an overview of commonly clinically relevant DDIs and DNIs in older people. Most clinically relevant DDIs are of pharmacodynamic origin and often include cardiovascular, antithrombotic and centrally acting drugs. The most common DNI is a pharmacokinetic interaction, where a nutrient or enteral feed affects the absorption of a drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017;17(1):230. https://doi.org/10.1186/s12877-017-0621-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Salazar JA, Poon I, Nair M. Clinical consequences of polypharmacy in elderly: expect the unexpected, think the unthinkable. Expert Opin Drug Saf. 2007;6(6):695–704.

    Article  PubMed  Google Scholar 

  3. Shetty V, Chowta MN, Chowta KN, Shenoy A, Kamath A, Kamath P. Evaluation of potential drug–drug interactions with medications prescribed to geriatric patients in a tertiary care hospital. J Aging Res. 2018;2018:5728957.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bjerrum L, Andersen M, Petersen G, Kragstrup J. Exposure to potential drug interactions in primary health care. Scand J Prim Health Care. 2003;21:153–8.

    Article  PubMed  Google Scholar 

  5. Magro L, Moretti U, Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions. Expert Opin Drug Saf. 2012;11:83–94.

    Article  CAS  PubMed  Google Scholar 

  6. Mallet L, Spinewine A, Huang A. The challenge of managing drug interactions in elderly people. Lancet. 2007;370:185–91.

    Article  CAS  PubMed  Google Scholar 

  7. Hines LE, Murphy JE. Potentially harmful drug–drug interactions in the elderly: a review. Am J Geriatr Pharmacother. 2011;9:364–77.

    Article  CAS  PubMed  Google Scholar 

  8. Gnjidic D, Johnell K. Clinical implications from drug–drug and drug–disease interactions in older people. Clin Exp Pharmacol Physiol. 2013;40:320–5.

    Article  CAS  PubMed  Google Scholar 

  9. Bykov K, Gagne JJ. Generating evidence of clinical outcomes of drug–drug interactions. Drug Saf. 2017;40:101–3.

    Article  PubMed  Google Scholar 

  10. Swart F, Bianchi G, Lenzi J, Iommi M, Maestri L, Raschi E, et al. Risk of hospitalization from drug–drug interactions in the elderly: real-world evidence in a large administrative database. Aging. 2020;12(19):711–39.

    Article  Google Scholar 

  11. Dechanont S, Maphanta S, Butthum B, Kongkaew C. Hospital admissions/visits associated with drug–drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2014;23:489–97.

    Article  PubMed  Google Scholar 

  12. Genser D. Food and drug interaction: consequences for the nutrition/health status. Ann Nutr Metab. 2008;52:29–32.

    Article  CAS  PubMed  Google Scholar 

  13. Amadi CN, Mgbahurike AA. Selected food/herb–drug interactions: mechanisms and clinical relevance. Am J Ther. 2018;25(4):e423–33.

    Article  PubMed  Google Scholar 

  14. Akamine D, Filho MK, Peres CM. Drug–nutrient interactions in elderly people. Curr Opin Clin Nutr Metab Care. 2007;10(3):304–10.

    Article  PubMed  Google Scholar 

  15. Briguglio M, Hrelia S, Malaguti M, Serpe L, Canaparo R, Dell'Osso B, Galentino R, De Michele S, Dina CZ, Porta M, Banfi G. Food bioactive compounds and their interference in drug pharmacokinetic/pharmacodynamic profiles. Pharmaceutics. 2018;10(4):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. White R, Bradnam V. Handbook of drug administration via enteral feeding tubes. London: Pharmaceutical Press; 2015.

    Google Scholar 

  17. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

    Article  CAS  PubMed  Google Scholar 

  19. Ucar M, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol. 2004;59:879–82.

    Article  CAS  PubMed  Google Scholar 

  20. Eggertsen R, et al. Effects of treatment with a commercially available St John’s Wort product (Movina) on cholesterol levels in patients with hypercholesterolemia treated with simvastatin. Scand J Prim Health Care. 2007;25:154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bowie MW, Slattum PW. Pharmacodynamics in older adults: a review. Am J Geriatr Pharmacother. 2007;5(3):263–303.

    Article  CAS  PubMed  Google Scholar 

  22. Vestal RE, Wood AJJ, Shand DG. Reduced β-adrenoceptor sensitivity in the elderly. Clin Pharmacol Ther. 1979;26(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D. β-Adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014;9(4):396.

    Google Scholar 

  24. White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, et al. Age-related changes in β-adrenergic neuroeffectors system in the human heart. Circulation. 1994;90:1225–38.

    Article  CAS  PubMed  Google Scholar 

  25. Scarpace PJ, Turner N, Mader SL. β-Adrenergic function in aging. Drugs Aging. 1991;1:116–29.

    Article  CAS  PubMed  Google Scholar 

  26. Zerah L, Henrard S, Wilting I, O'Mahony D, Rodondi N, Dalleur O, Dalton K, Knol W, Haschke M, Spinewine A. Prevalence of drug–drug interactions in older people before and after hospital admission: analysis from the OPERAM trial. BMC Geriatr. 2021;21(1):571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tulner LR, Frankfort SV, Gijsen GJ, van Campen JP, Koks CH, Beijnen JH. Drug–drug interactions in a geriatric outpatient cohort: prevalence and relevance. Drugs Aging. 2008;25(4):343–55.

    Article  PubMed  Google Scholar 

  28. Anrys P, Petit AE, Thevelin S, Sallevelt B, Drenth C, Soiza RL, Correa-Pérez A, Dalleur O, De Brauwer I, Petrovic M, Coleman JJ, Dalton K, O'Mahony D, Löwe A, Thürig S, Gudmundsson A, Cherubini A, Panos A, Mavridis D, Rodondi N, Spinewine A. An international consensus list of potentially clinically significant drug–drug interactions in older people. J Am Med Dir Assoc. 2021;22(10):2121–2133.e24.

    Article  PubMed  Google Scholar 

  29. Vonbach P, Dubied A, Krähenbühl S, Beer JH. Prevalence of drug–drug interactions at hospital entry and during hospital stay of patients in internal medicine. Eur J Intern Med. 2008;19(6):4123–0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilma Knol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Koning, E.M., Huisbrink, J., Knol, W. (2023). Drug–Drug and Drug–Nutrients Interactions: From Theory to Clinical Relevance. In: Cherubini, A., Mangoni, A.A., O’Mahony, D., Petrovic, M. (eds) Optimizing Pharmacotherapy in Older Patients. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-28061-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28061-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28060-3

  • Online ISBN: 978-3-031-28061-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics