Skip to main content

Abstract

Evolution of ultra-fast and reliable communication infrastructures have opened up new possibilities of applications in many industries, including urban transport systems. As the number of interconnected vehicles grows, new requirements for vehicular networks emerge. The original notion of vehicular ad-hoc networks (VANET) is morphing into a new concept known as the Internet of Vehicles (IoV). In this chapter, various challenges of secure automotive system design in the context of IoV and latest industry standards are discussed. One of the focus is naturally on the Autonomous Vehicle (AV). After reviewing various communication protocols for the smooth operations of IoV the privacy and security challenges are outlined. The known vulnerabilities in an IoV are identified and classified. To obtain a robust IoV infrastructure, various techniques originating from cryptography are being deployed. The chapter is concluded with an overview of such security measures.

Cyber Security Research Centre (CYSREN), Nanyang Technological University & DESAY SV Automotive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasrouny, H., Samhat, A.E., Bassil, C., Laouiti, A.: Vanet security challenges and solutions: a survey. Veh. Commun. 7, 7–20 (2017)

    Google Scholar 

  2. Lee, M., Atkison, T.: Vanet applications: past, present, and future. Veh. Commun. 28, 100310 (2021)

    Google Scholar 

  3. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular networks: a survey. IEEE Commun. Surv. Tutorials 17(1), 228–255 (2014)

    Article  Google Scholar 

  4. Wang, J., Huang, Y., Feng, Z., Jiang, C., Zhang, H., Leung, V.C.: Reliable traffic density estimation in vehicular network. IEEE Trans. Veh. Technol. 67(7), 6424–6437 (2018)

    Article  Google Scholar 

  5. Wang, Y., Li, F.: Vehicular ad hoc networks. In: Guide to wireless ad hoc networks, pp. 503–525. Springer (2009)

    Google Scholar 

  6. Hussain, S.S., Ustun, T.S., Nsonga, P., Ali, I.: IEEE 1609 wave and IEC 61850 standard communication based integrated EV charging management in smart grids. IEEE Trans. Veh. Technol. 67(8), 7690–7697 (2018)

    Article  Google Scholar 

  7. Laberteaux, K., Hartenstein, H.: VANET: vehicular applications and inter-networking technologies. John Wiley & Sons (2009)

    Google Scholar 

  8. ETSI: CYBER; Methods and protocols; Part 1: Method and pro forma for Threat, Vulnerability, Risk Analysis (TVRA). IEEE Trans. Intell. Transp. Syst. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.05_60/ts_10216501v050205p.pdf

  9. IEEE Guide for Wireless Access in Vehicular Environments (WAVE) Architecture, IEEE Std 1609.0–2019 (Revision of IEEE Std 1609.0–2013), pp. 1–106, 10 April 2019, https://doi.org/10.1109/IEEESTD.2019.8686445

  10. Karati, A., Islam, S.H., Biswas, G., Bhuiyan, M.Z.A., Vijayakumar, P., Karuppiah, M.: Provably secure identity-based signcryption scheme for crowdsourced industrial internet of things environments. IEEE Internet Things J. 5(4), 2904–2914 (2017)

    Article  Google Scholar 

  11. Sakiz, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Ad Hoc Netw. 61, 33–50 (2017)

    Article  Google Scholar 

  12. Barrett, M.P.: Framework for improving critical infrastructure cybersecurity. National Institute of Standards and Technology, Gaithersburg, MD, USA, Tech. Rep (2018)

    Google Scholar 

  13. DRAFT INTERNATIONAL STANDARD ISO/SAE DIS 21434. International Organization for Standardization, Geneva, CH, Standard, Feb. (2021)

    Google Scholar 

  14. Virtualization, N.F.: European telecommunications standards institute (ETSI). Industry Specification Group (ISG) (2013)

    Google Scholar 

  15. Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., and Liu, C.: Routing in internet of vehicles: a review. IEEE Trans. Intell. Transp. Syst. 16(5), 2339–2352 (2015)

    Article  Google Scholar 

  16. Lin, X., Li, X.: Achieving efficient cooperative message authentication in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 62(7), 3339–3348 (2013)

    Article  Google Scholar 

  17. Kim, S., Ulfarsson, G.F.: Traffic safety in an aging society: analysis of older pedestrian crashes. J. Transp. Saf. Secur. 11(3), 323–332 (2019)

    Google Scholar 

  18. Engoulou, R.G., Bellaïche, M., Pierre, S., Quintero, A.: Vanet security surveys. Comput. Commun. 44, 1–13 (2014)

    Article  Google Scholar 

  19. Christensen, L., Dannberg, D.: Ethical hacking of IoT devices: OBD-II dongles (Dissertation). (2019). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254571

  20. Chattopadhyay, A., Lam, K.-Y., Tavva, Y.: Autonomous vehicle: security by design. IEEE Trans. Intell. Transp. Syst. 22(11), 7015–7029 (2021)

    Article  Google Scholar 

  21. Mejri, M.N., Ben-Othman, J., Hamdi, M.: Survey on VANET security challenges and possible cryptographic solutions. Veh. Commun. 1(2), 53–66 (2014)

    Google Scholar 

  22. Agrafiotis, I., Nurse, J.R., Goldsmith, M., Creese, S., Upton, D.: A taxonomy of cyber-harms: defining the impacts of cyber-attacks and understanding how they propagate. J. Cybersecur. 4(1), tyy006 (2018)

    Google Scholar 

  23. Lu, Z., Qu, G., Liu, Z.: A survey on recent advances in vehicular network security, trust, and privacy. IEEE Trans. Intell. Transp. Syst. 20(2), 760–776 (2018)

    Article  Google Scholar 

  24. Sedjelmaci, H., Senouci, S.M.: An accurate and efficient collaborative intrusion detection framework to secure vehicular networks. Comput. Electr. Eng. 43, 33–47 (2015)

    Article  Google Scholar 

  25. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M. et al.: Understanding the mirai botnet. In: 26th USENIX security symposium (USENIX Security 17), pp. 1093–1110 (2017)

    Google Scholar 

  26. Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-air: How we remotely compromised the gateway, BCM, and autopilot ECUS of tesla cars. Briefing, Black Hat USA (2018)

    Google Scholar 

  27. Ghosal, A., Conti, M.: Security issues and challenges in V2X: a survey. Comput. Netw. 169, 107093 (2020)

    Article  Google Scholar 

  28. Cao, Y., Wang, N., Xiao, C., Yang, D., Fang, J., Yang, R., Chen, Q.A., Liu, M., Li, B.: Invisible for both camera and LiDAR: security of multi-sensor fusion based perception in autonomous driving under physical-world attacks. In: 2021 IEEE symposium on security and privacy (SP), May 2021. [Online]. Available: https://doi.org/10.1109/SP40001.2021.00076

  29. Kaiwartya, O., Abdullah, A.H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., Liu, X.: Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4, 5356–5373 (2016)

    Article  Google Scholar 

  30. Huang, D., Hong, X., Gerla, M.: Situation-aware trust architecture for vehicular networks. IEEE Commun. Mag. 48(11), 128–135 (2010)

    Article  Google Scholar 

  31. Hbaieb, A., Ayed, S., Chaari, L.: A survey of trust management in the internet of vehicles. Comput. Netw. 203, 108558 (2022)

    Article  Google Scholar 

  32. El-Sayed, H., Ignatious, H.A., Kulkarni, P., Bouktif, S.: Machine learning based trust management framework for vehicular networks. Veh. Commun. 25, 100256 (2020)

    Google Scholar 

  33. Malik, N., Nanda, P., He, X., Liu, R.P.: Vehicular networks with security and trust management solutions: proposed secured message exchange via blockchain technology. Wirel. Netw. 26(6), 4207–4226 (2020)

    Article  Google Scholar 

  34. Ouchani, S. and Khaled, A.: Security assessment and hardening of autonomous vehicles. In: Risks and security of internet and systems: 15th international conference, CRiSIS 2020, Paris, France, November 4–6, 2020, Revised Selected Papers 15, pp. 365–375. Springer International Publishing (2021)

    Google Scholar 

  35. Liu, H., Hu, Z., Song, Y., Wang, J., Xie, X.: Vehicle-to-grid control for supplementary frequency regulation considering charging demands. IEEE Trans. Power Syst. 30(6), 3110–3119 (2014)

    Article  Google Scholar 

  36. Cate, F.H.: The failure of fair information practice principles. In: Consumer protection in the age of the ‘information economy’, pp. 351–388. Routledge (2016)

    Google Scholar 

  37. Costantini, F., Thomopoulos, N., Steibel, F., Curl, A., Lugano, G., Kováčiková, T.: Autonomous vehicles in a GDPR era: an international comparison. In: Advances in transport policy and planning, vol. 5, pp. 191–213. Elsevier (2020)

    Google Scholar 

  38. “Intel Automotive Research Workshops (2016). [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/automotive-security-research-workshops-summary.pdf

  39. Bell, S.: 2018: A pivotal year for black hat cyber attacks on connected cars (2018) [Online]. Available: https://www.tu-auto.com/2018-a-pivotal-year-for-black-hat-cyber-attacks-on-connected-cars

  40. El-Rewini, Z., Sadatsharan, K., Sugunaraj, N., Selvaraj, D.F., Plathottam, S.J., Ranganathan, P.: Cybersecurity attacks in vehicular sensors. IEEE Sensors J. 20(22), 13752–13767 (2020)

    Article  Google Scholar 

  41. Shoukry, Y., Martin, P., Tabuada, P., Srivastava, M.: Non-invasive spoofing attacks for anti-lock braking systems. In: Cryptographic hardware and embedded systems - CHES 2013, pp. 55–72. Springer, Berlin, Heidelberg [Online]. Available: https://doi.org/10.1007/978-3-642-40349-1_4

  42. Tu, Y., Lin, Z., Lee, I., Hei, X.: Injected and delivered: fabricating implicit control over actuation systems by spoofing inertial sensors. In: 27th USENIX security symposium (USENIX Security 18), pp. 1545–1562. USENIX Association, Baltimore, MD (2018) [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/presentation/tu

  43. Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: WALNUT: Waging doubt on the integrity of MEMS accelerometers with acoustic injection attacks. In: 2017 IEEE European symposium on security and privacy (EuroS P), pp. 3–18 (2017)

    Google Scholar 

  44. Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe, W., Seskar, I.: Security and privacy vulnerabilities of in-car wireless networks: a tire pressure monitoring system case study. In: Proceedings of the 19th USENIX conference on security, ser. USENIX Security’10, p. 21. USENIX Association (2010)

    Google Scholar 

  45. Shin, H., Kim, D., Kwon, Y., Kim, Y.: Illusion and dazzle: adversarial optical channel exploits against lidars for automotive applications. In: Cryptographic hardware and embedded systems - CHES 2017 - 19th international conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture notes in computer science, W. Fischer and N. Homma, Eds., vol. 10529, pp. 445–467. Springer (2017) [Online]. Available: https://doi.org/10.1007/978-3-319-66787-4_22

  46. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental analyses of automotive attack surfaces. In: 20th USENIX security symposium (USENIX Security 11). San Francisco, CA: USENIX Association, Aug. (2011) [Online]. Available: https://www.usenix.org/conference/usenix-security-11/comprehensive-experimental-analyses-automotive-attack-surfaces

  47. Halder, S., Ghosal, A., Conti, M.: Secure over-the-air software updates in connected vehicles: a survey. Comput. Netw. 178, 107343 (2020) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128619314963

  48. “Read it twice! a Mass-Storage-Based TOCTTOU attack. In: 6th USENIX workshop on offensive technologies (WOOT 12). Bellevue, WA: USENIX Association, Aug. (2012) [Online]. Available: https://www.usenix.org/conference/woot12/workshop-program/presentation/mulliner

  49. Wen, H., Chen, Q.A., Lin, Z.: Plug-N-Pwned: comprehensive vulnerability analysis of OBD-II dongles as a new Over-the-Air attack surface in automotive IoT. In: 29th USENIX security symposium (USENIX Security 20), pp. 949–965. USENIX Association, Aug. (2020) [Online]. Available: https://www.usenix.org/conference/usenixsecurity20/presentation/wen

  50. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: 2010 IEEE symposium on security and privacy, pp. 447–462 (2010)

    Google Scholar 

  51. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibañez, J.A.: Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J. 5(5), 3701–3709 (2017)

    Article  Google Scholar 

  52. Mundhenk, P., Paverd, A., Mrowca, A., Steinhorst, S., Lukasiewycz, M., Fahmy, S.A., Chakraborty, S.: Security in automotive networks: lightweight authentication and authorization. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22(2), 1–27 (2017)

    Google Scholar 

  53. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Annual international cryptology conference, pp. 104–113. Springer (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunmozhi Manimuthu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manimuthu, A., Ngo, T., Chattopadhyay, A. (2023). Internet of Vehicles: Security and Research Roadmap. In: Kukkala, V.K., Pasricha, S. (eds) Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-28016-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28016-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28015-3

  • Online ISBN: 978-3-031-28016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics