Skip to main content

Spatiotemporal Information Based Intrusion Detection Systems for In-Vehicle Networks

  • Chapter
  • First Online:
Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems
  • 376 Accesses

Abstract

Since communication security is not a primary concern at the beginning of in-vehicle network protocol design (e.g., controller area network, CAN), it is not a surprise that in-vehicle networks are exposed to numerous security threats. As vehicles are safety-critical, practical and effective steps should be taken to protect drivers and passengers. This chapter describes intrusion detection systems (IDS) on in-vehicle networks for reinforcing CAN security. These IDS mechanisms rely on spatiotemporal information of CAN data frames. Given limited computational power of in-vehicle electronic control units, lightweight IDS is preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nie, S., Liu, L., Du, Y.: Free-fall: Hacking tesla from wireless to can bus. https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf

  2. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental analyses of automotive attack surfaces. In: USENIX Security Symposium, pp. 447–462 (2011)

    Google Scholar 

  3. Miller, C., Chris, C.: A survey of remote automotive attack surfaces. Black Hat USA (2014)

    Google Scholar 

  4. Miller, C., Chris, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat U S A 2015, 91 (2015)

    Google Scholar 

  5. Hunt, T.: Controlling vehicle features of Nissan LEAFs across the globe via vulnerable APIs. Blog Post. February (2016). https://www.troyhunt.com/controlling-vehicle-features-of-nissan/

  6. Currie, R.: Developments in car hacking. SANS Institute. https://www.sans.org/white-papers/36607/

  7. KEEN Security Lab. Experimental security assessment of BMW cars: a summary report. https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of_BMWCars_by_KeenLab.pdf

  8. CAN specification Version 2.0, Robert BOSCH GmbH, Stuttgart, Germany (1991)

    Google Scholar 

  9. Liu, J., Zhang, S., Sun, W., Shi, Y.: In-vehicle network attacks and countermeasures: challenges and future directions. IEEE Netw. 31, 50–58 (2017)

    Article  Google Scholar 

  10. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis of a modern automobile. In: 2010 IEEE symposium on security and privacy, Oakland, pp. 447–462 (2010)

    Google Scholar 

  11. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks–practical examples and selected short-term countermeasures. In: International conference on computer safety, reliability, and security, Newcastle Upon Tyne, UK (2008)

    Google Scholar 

  12. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1110–1115 (2011)

    Google Scholar 

  13. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: 25th USENIX security symposium, pp. 911–927 (2016)

    Google Scholar 

  14. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of ID sequences. In: IEEE intelligent vehicles symposium, pp. 1577–1583 (2017)

    Google Scholar 

  15. Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L.: Car2X communication: securing the last meter - a cost-effective approach for ensuring trust in Car2X applications using in-vehicle symmetric cryptography. In: 2011 IEEE VTC Fall, pp. 1–5 (2011)

    Google Scholar 

  16. Schweppe, H., Gendrullis, T., et al.: Securing Car2X applications with effective hardware-software co-design for vehicular on-board networks. In: 27th Joint VDI/VW automotive security conference, Berlin, Germany, October (2011)

    Google Scholar 

  17. Groza, B., Murvay, P.S.: Efficient protocols for secure broadcast in controller area networks. IEEE Trans. Ind. Inf. 9(4), 2034–2042 (2013)

    Article  Google Scholar 

  18. Groza, B., Murvay, P.S.: Secure broadcast with one-time signatures in controller area networks. In: 6th International conference on availability, reliability and security (2011)

    Google Scholar 

  19. Nilsson, D.K., Larson, U.E., et al.: Efficient in-vehicle delayed data authentication based on compound message authentication codes. In: IEEE 68th vehicular technology conference (2008)

    Google Scholar 

  20. Woo, S., Jo, H.J., Lee, D.H.: A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Trans. Intell. Transp. Syst. 16, 993 (2014)

    Google Scholar 

  21. Kurachi, R., Matsubara, Y., Takada, H., et al.: CaCAN - Centralized authentication system in CAN. In: Embedded security in cars (ESCAR) Europe conference, Hamburg (2014)

    Google Scholar 

  22. Herrewege, A.V., Singelee, D., Verbauwhede, I., et al.: CANAuth - a simple, backward compatible broadcast authentication protocol for CAN bus. In: ECRYPT workshop on lightweight cryptography (2011)

    Google Scholar 

  23. Smith, C.: The car hacker’s handbook: a guide for the penetration tester. No Starch Press, 401 China Basin Street Suite 108 San Francisco, CA United States, ISBN: 978-1-59327-703-1 (2016)

    Google Scholar 

  24. Saldivar-Sali, A., Einstein, H.: A landslide risk rating system for Baguio, Philippines. Eng. Geol. 91, 85 (2007)

    Article  Google Scholar 

  25. Golde, N., Redon, K., et al.: Weaponizing femtocells: the effect of rogue devices on mobile telecommunications. In: NDSS (2012)

    Google Scholar 

  26. Tsugawa, S.: Inter-vehicle communications and their applications to intelligent vehicles: an overview. In: IEEE intelligent vehicle symposium (2002)

    Google Scholar 

  27. Shukla, S.: Embedded security for vehicles: ECU hacking. Uppsala University (2016)

    Google Scholar 

  28. Farsi, M., Ratcli, K., Barbosa, M.: An overview of controller area network. Comput. Control Eng. J. 10, 113–120 (1999)

    Article  Google Scholar 

  29. Miller, C., Valasek, C.: Adventures in automotive networks and control units. In: DEF CON 21 hacking conference (2013)

    Google Scholar 

  30. Lan, H.M., Kwak, B.I., Kim, H.K.: Anomaly intrusion detection method for vehicular networks based on survival analysis. Veh. Commun. 14, 52–63 (2018)

    Google Scholar 

  31. Song, H.M., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In Proceedings of the international conference on information networking (ICOIN), Kota Kinabalu, Malaysia, 13–15 January (2016)

    Google Scholar 

  32. Seo, E., Song, H.M., Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 16th annual conference on privacy, security and trust (PST), Belfast, UK, 28–30 August (2018)

    Google Scholar 

  33. Tariq, S., Lee, S., Kim, H.K., Woo, S.S.: Detecting In-vehicle CAN message attacks using heuristics and RNNs. In Proceedings of the international workshop on information and operational technology security systems, Heraklion, Greece, 13 September (2018)

    Google Scholar 

  34. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack detection for in-vehicle networks. In Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, The Netherlands, 4–6 June, pp. 220–225 (2008)

    Google Scholar 

  35. Wang, C., Zhao, Z., Gong, L., Zhu, L., Cheng, X.: A distributed anomaly detection system for in-vehicle network using HTM. IEEE Access 6, 9091–9098 (2018)

    Article  Google Scholar 

  36. Hu, W., Liao, Y., Vemuri, V.R.: Robust anomaly detection using support vector machines. In Proceedings of the international conference on machine learning, Washington, DC, USA, 21–24 August, pp. 282–289 (2003)

    Google Scholar 

  37. Li, H., Wang, Y., Qin, H., Xinkai, W.: Investigating the effects of attack detection for in-vehicle networks based on clock drift of ECUs. IEEE Access 6, 49375–49384 (2018)

    Article  Google Scholar 

  38. Xiao, J., Wu, H., Li, X.: Robust and self-evolving IDS for in-vehicle network by enabling spatiotemporal information. In Proceedings of the IEEE 21st international conference on high performance computing and communications, Zhangjiajie, China, 10–12 August (2019)

    Google Scholar 

  39. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

  40. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  41. Lee, H., Jeong, S.H., Kim, H.K.: A novel intrusion detection system for in-vehicle network by using remote frame. In: 15th Annual conference on privacy, security and trust, pp. 57–66 (2017)

    Google Scholar 

  42. Wu, W., Huang, Y., et al.: Sliding window optimized information entropy analysis method for intrusion detection on in-vehicle networks. IEEE Access 6, 45233–45245 (2018)

    Article  Google Scholar 

  43. Shi, X., Chen, Z., Wang, H., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems 1, 802–810 (2015)

    Google Scholar 

  44. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)

    Google Scholar 

  45. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The author is supported by the National Natural Science Foundation of China (61971192), Shanghai Municipal Education Commission (2021-01-07-00-08-E00101), and Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Bao, Y., Hou, X. (2023). Spatiotemporal Information Based Intrusion Detection Systems for In-Vehicle Networks. In: Kukkala, V.K., Pasricha, S. (eds) Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-28016-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28016-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28015-3

  • Online ISBN: 978-3-031-28016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics