Skip to main content

Deep AI for Anomaly Detection in Automotive Cyber-Physical Systems

  • Chapter
  • First Online:
Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems

Abstract

Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this chapter, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks (CNNs) with an integrated attention mechanism to learn the dependency between messages traversing the in-vehicle network. Post-deployment in a vehicle, TENET employs a robust quantitative metric and classifier, together with the learned dependencies, to detect anomalous patterns. TENET achieves an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, 86.95% decrease in memory footprint, and 48.14% lower inference time when compared to the best performing prior work on automotive anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukkala, V.K., Tunnell, J., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: a path toward autonomous vehicles. In: Proceeding of IEEE CEM (2018)

    Google Scholar 

  2. Kukkala, V.K., Pasricha, S., Bradley, T.: SEDAN: security-aware design of time-critical automotive networks. In IEEE TVT (2020)

    Google Scholar 

  3. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle. In BlackHat USA (2015)

    Google Scholar 

  4. Adventures in Automotive Networks and Control Units, [online]: https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf (2013)

  5. Sitawarin, C., Bhagoji, A.N., Mosenia, A., Chiang, M., Mittal, P.: DARTS: deceiving autonomous cars with toxic signs. In: ArXiv (2018)

    Google Scholar 

  6. Dürrwang, J., Braun, J., Rumez, M., Kriesten, R., Pretschner, A.: Enhancement of Automotive Penetration Testing with Threat Analyses Results. In: SAE (2018)

    Google Scholar 

  7. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of can messages for in-vehicle network. In: ICOIN (2016)

    Google Scholar 

  8. Gmiden, M., Gmiden, M.H., Trabelsi, H.: An intrusion detection method for securing in-vehicle CAN bus. In: IEEE Proceeding of STA (2016)

    Google Scholar 

  9. Lee, H., Jeong, S.H., Kim, H.K.: OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In: PST (2017)

    Google Scholar 

  10. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of ID equences. In: IEEE IV (2017)

    Google Scholar 

  11. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: IV (2011)

    Google Scholar 

  12. Wu, W., Huang, Y., Kurachi, R., Zeng, G., Xie, G., Li, R., Li, K.: Sliding window optimized information entropy analysis method for intrusion detection on in-vehicle networks. In: IEEE Access (2018)

    Google Scholar 

  13. Stabili, D., Marchetti, M., Colajanni, M., Detecting attacks to internal vehicle networks through hamming distance. In: AEIT (2017)

    Google Scholar 

  14. Shin, K.G., Shin, K.G.: Viden: attacker identification on in-vehicle networks. In: ACM SIGSAC (2017)

    Google Scholar 

  15. Kang, M., Kang, J.: A novel intrusion detection method using deep neural network for in-vehicle network security. In: VTC (2016)

    Google Scholar 

  16. Weber, M., Wolf, G., Zimmer, B., Sax, E.: Online detection of anomalies in vehicle signals using replicator neural networks. In: ESCAR (2018)

    Google Scholar 

  17. Hanselmann, M., Strauss, T., Dormann, K., Ulmer, H.: CANet: an unsupervised intrusion detection system for high dimensional can bus data. In: IEEE Access (2020)

    Google Scholar 

  18. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. In: IEEE Access (2018)

    Google Scholar 

  19. Hossain, M.A., Inoue, H., Ochiai, H., Fall, D., Kadobayashi, Y. LSTM-based intrusion detection system for in-vehicle can bus communications. In: IEEE Access (2020)

    Google Scholar 

  20. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data with long short-term memory networks. In: DSAA (2016)

    Google Scholar 

  21. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: intrusion detection using recurrent autoencoders in automotive embedded systems. In: TCAD (2020)

    Google Scholar 

  22. Ezeme, M., Mahmoud, Q.H., Azim, A.: Hierarchical attention-based anomaly detection model for embedded operating systems. In: RTCSA (2018)

    Google Scholar 

  23. Tariq, S., Lee, S., Woo, S.S.: CANTransfer: Transfer learning based intrusion detection on a controller area network using convolutional lstm network. In: ACM SAC (2020)

    Google Scholar 

  24. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: LATTE: LSTM self-attention based anomaly detection in embedded automotive platforms. In: ACM TECS (2021)

    Google Scholar 

  25. [online] https://assets.vector.com/cms/content/products/gl_logger/Docs/GL1000_Manual_ EN.pdf

  26. Waibel, T., Hanazawa, G., Hinton, K.S., Lang, K.J.: Phoneme recognition using timedelay neural networks. In: IEEE Transactions on Acoustics, Speech, and Signal Processing (1989)

    Google Scholar 

  27. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. In: ArXiv (2018)

    Google Scholar 

  28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: ArXiv (2017)

    Google Scholar 

  29. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: temporal cnn with attention for anomaly detection in automotive cyber-physical systems. In: IEEE/ACM ASPDAC (2022)

    Google Scholar 

  30. Kukkala, V.K., Bradley, T., Pasricha, S.: Priority-based multi-level monitoring of signal integrity in a distributed powertrain control system. In: Proceeding of IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (2015)

    Google Scholar 

  31. Kukkala, V.K., Bradley, T., Pasricha, S.: Uncertainty Analysis and Propagation for an Auxiliary Power Module. In: Proceeding of IEEE Transportation Electrification Conference (TEC) (2017)

    Google Scholar 

  32. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS: Jitter-Aware Message Scheduling for FlexRay Automotive Networks. In: Proceeding of IEEE/ACM International Symposium on Network-on-Chip (NOCS) (2017)

    Google Scholar 

  33. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS-SG: a framework for jitter-aware message scheduling for time-triggered automotive networks. In: ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol. 24, No. 6 (2019)

    Google Scholar 

  34. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: Roadmap for cybersecurity in autonomous vehicles. In: IEEE Consumer Electronics Magazine (CEM) (2022)

    Google Scholar 

  35. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy with ADAS. In: SAE Inter-national Journal of Connected and Automated Vehicles, Vol. 1, No. 2 (2018)

    Google Scholar 

  36. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards Improving Vehicle Fuel Economy with ADAS. In Proceeding of SAE World Congress Experience (WCX) (2018)

    Google Scholar 

  37. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley, T.H.: Enabling prediction for optimal fuel economy vehicle control. In Proceeding of SAE World Congress Experience (WCX) (2018)

    Google Scholar 

  38. Dey, J., Taylor, W., Pasricha, S.: VESPA: a framework for optimizing heterogeneous sensor placement and orientation for autonomous vehicles. In IEEE Consumer Electronics Magazine (CEM), Vol. 10, No. 2 (2021)

    Google Scholar 

  39. DiDomenico, G.C., Bair, J., Kukkala, V.K., Tunnell, J., Peyfuss, M., Kraus, M., Ax, J., Lazarri, J., Munin, M., Cooke, C., Christensen, E.: Colorado state university EcoCAR 3 final technical report. In: SAE World Congress Experience (WCX) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar Kukkala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiruloga, S.V., Kukkala, V.K., Pasricha, S. (2023). Deep AI for Anomaly Detection in Automotive Cyber-Physical Systems. In: Kukkala, V.K., Pasricha, S. (eds) Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-28016-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28016-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28015-3

  • Online ISBN: 978-3-031-28016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics