Skip to main content

Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review

  • Chapter
  • First Online:
Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19

Abstract

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now plagued the world for almost 3 years. Although vaccines are now available, the severity of the pandemic and the current dearth of approved effective medications have prompted the need for novel treatment approaches. Curcumin, as a food nutraceutical with anti-inflammatory and antioxidant effects, is now under consideration for the prevention and treatment of COVID-19. Curcumin has been demonstrated to retard the entrance of SARS-CoV-2 into cells, interfere with its proliferation inside cells, and curb the hyperinflammatory state caused by the virus by modulating immune system regulators, minimizing the cytokine storm effect, and modulating the renin-angiotensin system. This chapter discusses the role of curcumin and its derivatives in the prevention and treatment of COVID-19 infection, considering the molecular mechanisms involved. It will also focus on the molecular and cellular profiling techniques as essential tools in this research, as these can be used in the identification and development of new biomarkers, drug targets, and therapeutic approaches for improved patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreno-Eutimio MA, Lopez-Macias C, Pastelin-Palacios R (2020) Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect 22(4–5):226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lai CC, Shih TP, Ko WC, et al (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gorbalenya AE, Baker SC, Baric RS, et al (2020) Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. BioRxiv. https://doi.org/10.1038/s41564-020-0695-z

  4. Wang M, Cao R, Zhang L, et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elena SF, Sanjuán R (2005) Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol 79(18):11555–11558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guan WJ, Ni ZY, Hu Y, et al (2020) Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med 382(18):1708–1720

    Article  CAS  PubMed  Google Scholar 

  7. Guo YR, Cao QD, Hong ZS, et al (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 7(1):1–10

    CAS  Google Scholar 

  8. Li JY, You Z, Wang Q, et al (2020) The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect 22(2):80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu K, Fang YY, Deng Y, et al (2020) Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chinese Med J 133(09):1025–1031

    Article  CAS  Google Scholar 

  10. Huang C, Wang Y, Li X, et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. European Medicines Agency; COVID-19 Treatments; Approved for use in the European Union (2022). https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments. Accessed October 24, 2022

  12. Sahebkar A, Henrotin Y (2016) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med 17(6):1192–1202

    PubMed  Google Scholar 

  13. Praditya D, Kirchhoff L, Brüning J et al (2019) Anti-infective properties of the golden spice curcumin. Front Microbiol 10912. https://doi.org/10.3389/fmicb.2019.00912

  14. Khurana A, Ho CT (1988) High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in Curcuma longa L. J Liq Chromatogr 11(11):2295–2304

    Article  CAS  Google Scholar 

  15. Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, et al (2018) Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev 17(2):125–135

    Article  CAS  PubMed  Google Scholar 

  16. Hasanzadeh S, Read MI, Bland AR, et al (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921

    Google Scholar 

  17. Iranshahi M, Sahebkar A, Takasaki M, et al (2009) Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev 18(5):412–415

    Article  CAS  PubMed  Google Scholar 

  18. Panahi Y, Ghanei M, Bashiri S, et al (2014) Short-term Curcuminoid Supplementation for Chronic Pulmonary Complications due to Sulfur Mustard Intoxication: Positive Results of a Randomized Double-blind Placebo-controlled Trial. Drug Res 65(11):567–573

    Article  Google Scholar 

  19. Parsamanesh N, Moossavi M, Bahrami A, et al (2018) Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 136:181–193

    Article  CAS  PubMed  Google Scholar 

  20. Sahebkar A (2010) Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril 94(5):e75–e76

    Article  PubMed  Google Scholar 

  21. Shakeri A, Cicero AFG, Panahi Y, et al (2019) Curcumin: A naturally occurring autophagy modulator. J Cell Physiol 234(5):5643–5654

    Article  CAS  PubMed  Google Scholar 

  22. Afshari AR, Jalili-Nik M, Abbasinezhad-Moud F, et al (2021) Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr Med Chem 28(39):8116–8138

    Article  CAS  PubMed  Google Scholar 

  23. Alidadi M, Jamialahmadi T, Cicero AFG, et al (2020) The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies. Trends Food Sci Technol 99:426–440

    Article  CAS  Google Scholar 

  24. Gorabi AM, Kiaie N, Hajighasemi S, et al (2019) The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules 24(22):4029. https://doi.org/10.3390/molecules24224029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohajeri M, Bianconi V, Ávila-Rodriguez MF, et al (2020) Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacological Research 156:104765. https://doi.org/10.1016/j.phrs.2020.104765

    Article  CAS  PubMed  Google Scholar 

  26. Heidari Z, Daei M, Boozari M, et al (2022) Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother Res 36(4):1442–1458

    Article  CAS  PubMed  Google Scholar 

  27. Panahi Y, Khalili N, Hosseini MS, et al (2014) Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: Results of a randomized controlled trial. Complement Ther Med 22(5):851–857

    Article  PubMed  Google Scholar 

  28. Kurien BT,Scofield RH (2009) Oral dministration of heat-solubilized curcumin for potentially increasing curcumin bioavailability in experimental animals. Int J Cancer 125(8):1992. https://doi.org/10.1002/ijc.24547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masferrer JL, Zweifel BS, Manning PT, et al (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Nat Acad Sci USA 91(8):3228–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Surh YJ, Chun KS, Cha HH, et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 480–481:243–268

    Article  PubMed  Google Scholar 

  31. Sui Z, Salto R, Li J, et al (1993) Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1(6):415–422

    Article  CAS  PubMed  Google Scholar 

  32. Zahedipour F, Hosseini SA, Sathyapalan T, et al (2020) Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 34(11):2911–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, et al (2022) Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: A systematic review of clinical trials. Nutrients 14(2):256. https://doi.org/10.3390/nu14020256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alam S, Sarker MMR, Afrin S, et al (2021) Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions. Front Pharmacol 12:671498. https://doi.org/10.3389/fphar.2021.671498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, Blomme EA, Waring JF (2004) Toxicogenomics in drug discovery: from preclinical studies to clinical trials. Chem Biol Interact 150(1):71–85

    Article  CAS  PubMed  Google Scholar 

  36. Rahmoune H, Guest PC (2017) Application of multiplex biomarker approaches to accelerate drug discovery and development. Methods Mol Biol 1546:3–17

    Article  CAS  PubMed  Google Scholar 

  37. Saigusa D, Matsukawa N, Hishinuma E, et al (2021) Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 37:100373. https://doi.org/10.1016/j.dmpk.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  38. Guest PC (2022) Multiplex Biomarker Techniques: Methods and Applications for COVID-19 Disease Diagnosis and Risk Stratification; Methods in Molecular Biology, 251; Humana Press; Totowa, NJ, USA. ISBN-13: 978-1071623947

    Book  Google Scholar 

  39. Hoffmann M, Kleine-Weber H, Schroeder S, et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shang J, Wan Y, Luo C, et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Nat Acad Sci USA 117(21):11727–11734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maurya VK, Kumar S, Prasad AK, et al (2020) Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease 31(2):179–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katta S, Srivastava A, Thangapazham RL, et al (2019) Curcumin-gene expression response in hormone dependent and independent metastatic prostate cancer cells. Int J Mol Sci 20(19):4891. https://doi.org/10.3390/ijms20194891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suravajhala R, Parashar A, Malik B, et al (2020) Comparative docking studies on curcumin with COVID-19 proteins. Preprints 2020050439. https://doi.org/10.20944/preprints202005.0439.v3

  44. Molavi Z, Razi S, Mirmotalebisohi SA, et al (2021) Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach. Biomed Pharmacother 138:111544. https://doi.org/10.1016/j.biopha.2021.111544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horowitz RI, Freeman PR (2020) Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med Hypotheses 143:109851. https://doi.org/10.1016/j.mehy.2020.109851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huynh T, Wang H, Luan B (2020) In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. J Phys Chem Lett 11(11):4413–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Enmozhi SK, Raja K, Sebastine I, et al (2021) Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 39(9):3092–3098

    CAS  PubMed  Google Scholar 

  48. Kumar M, Sodhi KK, Singh DK (2021) Addressing the potential role of curcumin in the prevention of COVID-19 by targeting the Nsp9 replicase protein through molecular docking. Arch Microbiol 203(4):1691–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chandel V, Sharma PP, Raj S, et al (2022) Structure-based drug repurposing for targeting Nsp9 replicase and spike proteins of severe acute respiratory syndrome coronavirus 2 J Biomol Struct Dyn 40(1):249–262

    Article  CAS  PubMed  Google Scholar 

  50. Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, et al (2021) Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules 26(22):6900. https://doi.org/10.3390/molecules26226900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, et al (2019) The role of interleukin 6 during viral infections. Front Microbiol 101057. https://doi.org/10.3389/fmicb.2019.01057

  52. Hu B, Huang S,Yin L (2021) The cytokine storm and COVID-19. J Med Virol 93(1):250–256

    Article  CAS  PubMed  Google Scholar 

  53. Vardhana SA, Wolchok JD (2020) The many faces of the anti-COVID immune response. J Exp Med 217(6):e20200678. https://doi.org/10.1084/jem.20200678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hirano T, Murakami M (2020) COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 52(5):731–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu Y, Liu L (2017) Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. Influenza Other Respir Viruses 11(5):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kunnumakkara AB,Harsha C,Banik K et al (2019) Is curcumin bioavailability a problem in humans: Lessons from clinical trials. Expert Opin Drug Metab Toxicol 15(9):705–733

    Article  CAS  PubMed  Google Scholar 

  57. Valizadeh H,Abdolmohammadi-Vahid S,Danshina S et al (2020) Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 89107088 https://doi.org/10.1016/j.intimp.2020.107088

  58. Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al (2021) Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 7(2):e06350. https://doi.org/10.1016/j.heliyon.2021.e06350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hassaniazad M, Eftekhar E, Inchehsablagh BR, et al (2021) A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients. Phytother Res 35(11):6417–6427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu J, Bultynck G, Luyten T, et al (2013) Curcumin affects proprotein convertase activity: Elucidation of the molecular and subcellular mechanism. Biochimica Biophys Acta (BBA)-Mole Cell Res 1833(8):1924–1935

    Article  CAS  Google Scholar 

  61. D’ardes D, Boccatonda A, Rossi I, et al (2020) COVID-19 and RAS: unravelling an unclear relationship. Int J Mol Sci 21(8):3003. https://doi.org/10.3390/ijms21083003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pang XF, Zhang LH, Bai F, et al (2015) Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Des Devel Ther 9:6043–6054

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Subhan F, Khalil AAK, Zeeshan M, et al (2020) Curcumin: from ancient spice to modern anti-viral drug in COVID-19 pandemic. Life and Science 1(supplement):69–73. https://doi.org/10.37185/LnS.1.1.137

    Article  Google Scholar 

  64. Akinyemi AJ, Thome GR, Morsch VM, et al (2015) Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. J Funct Foods 17:792–801

    Article  CAS  Google Scholar 

  65. Yao Y, Wang W, Li M, et al (2016) Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells. Sci Rep 6(1):1–8

    Google Scholar 

  66. Hawkins SF, Guest PC (2022) Multiplex Quantitative Polymerase Chain Reaction Diagnostic Test for SARS-CoV-2 and Influenza A/B Viruses. Methods Mol Biol 2511:53–65

    Article  PubMed  Google Scholar 

  67. Tahmasebi S,El-Esawi MA,Mahmoud ZH et al (2021) Immunomodulatory effects of Nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol 236(7):5325–5338

    Article  CAS  PubMed  Google Scholar 

  68. Asadirad A, Nashibi R, Khodadadi A, et al (2022) Antiinflammatory potential of nano-curcumin as an alternative therapeutic agent for the treatment of mild-to-moderate hospitalized COVID-19 patients in a placebo-controlled clinical trial. Phytother Res 36(2):1023–1031

    Article  CAS  PubMed  Google Scholar 

  69. Guest PC, Abbasifard M, Jamialahmadi T, et al (2022) Multiplex Immunoassay for Prediction of Disease Severity Associated with the Cytokine Storm in COVID-19 Cases. Methods Mol Biol 2511:245–256

    Article  PubMed  Google Scholar 

  70. Zahedipour F, Guest PC, Majeed M, et al (2022) Evaluating the Effects of Curcumin on the Cytokine Storm in COVID-19 Using a Chip-Based Multiplex Analysis. Methods Mol Biol 2511:285–295

    Article  PubMed  Google Scholar 

  71. Guest PC, Rahmoune H (2022) Point-of-Care Device for Assessment of Blood Coagulation Status in COVID-19 Patients. Methods Mol Biol 2511:345–354

    Article  PubMed  Google Scholar 

  72. Pawar KS, Mastud RN, Pawar SK, et al (2021) Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol 1056. https://doi.org/10.3389/fphar.2021.669362

  73. Askari G, Sahebkar A, Soleimani D, et al (2022) The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: a randomized double-blind, placebo-controlled trial. Trials 23(1):1–10

    Article  Google Scholar 

Download references

Competing Interests

MM is the founder of Sami-Sabinsa group of companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Askari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golpour-Hamedani, S. et al. (2023). Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_21

Download citation

Publish with us

Policies and ethics