Skip to main content

Adaptive Data Stream Mining (DSM) Systems

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

Dynamic, data-driven methods are key to enabling the deployment of accurate and efficient data stream mining (DSM) systems, by invoking suitably configured queries in real-time on streams of input data. With the proliferation of technologies for big data analytics, application areas for stream mining are numerous and continually expanding—representative examples include healthcare, climate monitoring, surveillance, and network security. Due to the typically physical separation among data sources and computational resources, it is often necessary to deploy such stream mining systems in a distributed fashion, where local learners have access to disjoint subsets of the data that is to be mined, and forward their intermediate results to ensemble learners that combine the results from the local learners; this is true also in the case of edge computing where computation can take place at the data source. In such a distributed, data stream mining context, DDDAS principles must be incorporated strategically at all levels of the design and implementation process to effectively manage trade-offs among stream mining accuracy, resource requirements, performance, and energy efficiency. This chapter presents methodologies for such DDDAS-integrated, design and implementation of data stream mining systems, referring to these methods as Dataflow- and DDDAS-integrated Adaptive DSM system Design (DDADD), and which combine the methods of dataflow-based signal processing system design with the DDDAS paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2016). ArXiv:1603.04467v2 [cs.DC]

    Google Scholar 

  2. Abeshu, A., Chilamkurti, N.: Deep learning: the frontier for distributed attack detection in fog-to-things computing. IEEE Communications Magazine 56(2), 169–175 (2018)

    Article  Google Scholar 

  3. Awad, A., Bader-El-Den, M., McNicholas, J., Briggs, J.: Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. International journal of medical informatics 108, 185–195 (2017)

    Article  Google Scholar 

  4. Bhattacharyya, S.S., Deprettere, E., Leupers, R., Takala, J. (eds.): Handbook of Signal Processing Systems, third edn. Springer (2019)

    Google Scholar 

  5. Blasch, E.P., Ravela, S., Aved, A.J. (eds.): Handbook of Dynamic Data Driven Applications Systems. Springer (2018)

    Google Scholar 

  6. Blum, A.: Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain. Machine Learning 26(1), 5–23 (1997)

    Article  Google Scholar 

  7. Boutellier, J., Hautala, I.: Executing dynamic data rate actor networks on OpenCL platforms. In: Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 98–103 (2016)

    Google Scholar 

  8. Calloway, S., Venegas, L.: The new HIPAA law on privacy and confidentiality. Nursing Administration Quarterly 26(4), 40–54 (2002)

    Article  Google Scholar 

  9. Canzian, L., van der Schaar, M.: A network of cooperative learners for data–driven stream mining. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 2908–2912 (2014)

    Google Scholar 

  10. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. In: Proceedings of the International Conference on Information and Knowledge Management, pp. 314–323 (1993)

    Google Scholar 

  11. Chen, J., Li, K., Deng, Q., Li, K., Philip, S.Y.: Distributed deep learning model for intelligent video surveillance systems with edge computing. IEEE Transactions on Industrial Informatics (2019)

    Google Scholar 

  12. Dennis, J.B.: First version of a data flow procedure language. Tech. rep., Laboratory for Computer Science, Massachusetts Institute of Technology (1975)

    Google Scholar 

  13. Fall, K., Varadhan, K.: The ns Manual (formerly ns Notes and Documentation) (2011)

    Google Scholar 

  14. Fan, W., Stolfo, S.J., Zhang, J.: The application of AdaBoost for distributed, scalable and on-line learning. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 362–366 (1999)

    Google Scholar 

  15. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2), 151–178 (1998)

    Article  MATH  Google Scholar 

  17. Issariyakul, T., Hossain, E.: Introduction to Network Simulator NS2, second edn. Springer (2012)

    Google Scholar 

  18. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms, second edn. Wiley–IEEE Press (2011)

    Book  MATH  Google Scholar 

  19. Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE pp. 773–799 (1995)

    Google Scholar 

  20. Leupers, R., Aguilar, M.A., Eusse, J.F., Castrillon, J., Sheng, W.: MAPS: A software development environment for embedded multicore applications. In: S. Ha, J. Teich (eds.) Handbook of Hardware/Software Codesign, pp. 917–949. Springer (2017)

    Google Scholar 

  21. Li, H., Sudusinghe, K., Liu, Y., Yoon, J., van der Schaar, M., Blasch, E., Bhattacharyya, S.S.: Dynamic, data-driven processing of multispectral video streams. IEEE Aerospace & Electronic Systems Magazine 32(7), 50–57 (2017)

    Article  Google Scholar 

  22. Lin, S., Liu, Y., Lee, K., Li, L., Plishker, W., Bhattacharyya, S.S.: The DSPCAD framework for modeling and synthesis of signal processing systems. In: S. Ha, J. Teich (eds.) Handbook of Hardware/Software Codesign, pp. 1–35. Springer (2017)

    Google Scholar 

  23. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Madroãl, D., et al.: PAPIFY: Automatic instrumentation and monitoring of dynamic dataflow applications based on PAPI. IEEE Access 7, 111,801–111,812 (2019)

    Google Scholar 

  25. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Integrating novel class detection with classification for concept-drifting data streams. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 79–94 (2009)

    Google Scholar 

  26. Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with concept drift. IEEE Transactions on Knowledge and Data Engineering 24(4), 619–633 (2012)

    Article  Google Scholar 

  27. Park, B., Kargupta, H.: Distributed data mining: Algorithms, systems, and applications. In: N. Ye (ed.) Data Mining Handbook. Lawrence Erlbaum Associates (2004)

    Google Scholar 

  28. Shen, C., Plishker, W., Wu, H., Bhattacharyya, S.S.: A lightweight dataflow approach for design and implementation of SDR systems. In: Proceedings of the Wireless Innovation Conference and Product Exposition, pp. 640–645. Washington DC, USA (2010)

    Google Scholar 

  29. Vo, T.T., Nguyen, T.D., Vo, M.T.: Ubiquitous sensor network for development of climate change monitoring system based on solar power supply. In: Proceedings of the International Conference on Advanced Technologies for Communications, pp. 121–124 (2013)

    Google Scholar 

  30. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235 (2003)

    Google Scholar 

  31. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan, K.: When edge meets learning: Adaptive control for resource-constrained distributed machine learning. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 63–71. IEEE (2018)

    Google Scholar 

  32. Won, S., Cho, I., Sudusinghe, K., Xu, J., Zhang, Y., van der Schaar, M., Bhattacharyya, S.S.: A design methodology for distributed adaptive stream mining systems. In: Proceedings of the International Conference on Computational Science, pp. 2482–2491. Barcelona, Spain (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the US Air Force Office of Scientific Research under the Dynamic Data and Information Processing Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvra S. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Sudusinghe, K., Schaar, M.v.d., Bhattacharyya, S.S. (2023). Adaptive Data Stream Mining (DSM) Systems. In: Darema, F., Blasch, E.P., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-27986-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27986-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27985-0

  • Online ISBN: 978-3-031-27986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics