Skip to main content

VAISL: Visual-Aware Identification of Semantic Locations in Lifelog

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

Abstract

Organising and preprocessing are crucial steps in order to perform analysis on lifelogs. This paper presents a method for preprocessing, enriching, and segmenting lifelogs based on GPS trajectories and images captured from wearable cameras. The proposed method consists of four components: data cleaning, stop/trip point classification, post-processing, and event characterisation. The novelty of this paper lies in the incorporation of a visual module (using a pretrained CLIP model) to improve outlier detection, correct classification errors, and identify each event’s movement mode or location name. This visual component is capable of addressing imprecise boundaries in GPS trajectories and the partition of clusters due to data drift. The results are encouraging, which further emphasises the importance of visual analytics for organising lifelog data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://developer.foursquare.com/docs/places-api-overview.

  2. 2.

    https://www.google.com/maps/timeline.

References

  1. Alam, N., Graham, Y., Gurrin, C.: Memento: a prototype lifelog search engine for LSC’21. In: Proceedings of the 4th Annual on Lifelog Search Challenge, pp. 53–58. Association for Computing Machinery (ACM) (2021)

    Google Scholar 

  2. Andrew, A.H., Eustice, K., Hickl, A.: Using location lifelogs to make meaning of food and physical activity behaviors. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, pp. 408–411. IEEE (2013)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Fu, Z., Tian, Z., Xu, Y., Qiao, C.: A two-step clustering approach to extract locations from individual GPS trajectory data. ISPRS Int. J. Geo-Inf. 5(10), 166 (2016)

    Article  Google Scholar 

  6. Gomi, A., Itoh, T.: A personal photograph browser for life log analysis based on location, time, and person. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 1245–1251 (2011)

    Google Scholar 

  7. Gong, L., Sato, H., Yamamoto, T., Miwa, T., Morikawa, T.: Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines. J. Mod. Transp. 23(3), 202–213 (2015). https://doi.org/10.1007/s40534-015-0079-x

    Article  Google Scholar 

  8. Gouveia, R., Karapanos, E.: Footprint tracker: supporting diary studies with lifelogging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2921–2930 (2013)

    Google Scholar 

  9. Gurrin, C., Smeaton, A.F., Doherty, A.R., et al.: LifeLogging: personal big data. Found. Trends® Inf. Retrieval 8(1), 1–125 (2014)

    Article  Google Scholar 

  10. Gurrin, C., et al.: Introduction to the fifth annual lifelog search challenge, LSC’22. In: Proceedings of the 2022 International Conference on Multimedia Retrieval, pp. 685–687 (2022)

    Google Scholar 

  11. Heller, S., Rossetto, L., Sauter, L., Schuldt, H.: Vitrivr at the lifelog search challenge 2022. In: Proceedings of the 5th Annual on Lifelog Search Challenge, LSC 2022, pp. 27–31. Association for Computing Machinery, New York (2022)

    Google Scholar 

  12. Hwang, S., Evans, C., Hanke, T.: Detecting stop episodes from GPS trajectories with gaps. In: Thakuriah, P.V., Tilahun, N., Zellner, M. (eds.) Seeing Cities Through Big Data. SG, pp. 427–439. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40902-3_23

    Chapter  Google Scholar 

  13. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. arXiv:2102.05918 [cs], June 2021

  14. Kikhia, B., Boytsov, A., Hallberg, J., ul Hussain Sani, Z., Jonsson, H., Synnes, K.: Structuring and presenting lifelogs based on location data. In: Cipresso, P., Matic, A., Lopez, G. (eds.) MindCare 2014. LNICST, vol. 100, pp. 133–144. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11564-1_14

    Chapter  Google Scholar 

  15. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv:1907.11692 [cs], July 2019

  16. McKenzie, G., Janowicz, K.: Where is also about time: a location-distortion model to improve reverse geocoding using behavior-driven temporal semantic signatures. Comput. Environ. Urban Syst. 54, 1–13 (2015)

    Article  Google Scholar 

  17. Qiu, Z., Gurrin, C., Smeaton, A.F.: Evaluating access mechanisms for multimodal representations of lifelogs. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9516, pp. 574–585. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27671-7_48

    Chapter  Google Scholar 

  18. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv:2103.00020 [cs], February 2021

  19. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  20. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108 [cs], February 2020

  21. Schoier, G., Borruso, G.: Individual movements and geographical data mining. clustering algorithms for highlighting hotspots in personal navigation routes. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6782, pp. 454–465. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21928-3_32

    Chapter  Google Scholar 

  22. Tran, L.D., Nguyen, M.D., Nguyen, B., Lee, H., Zhou, L., Gurrin, C.: E-Myscéal: embedding-based interactive lifelog retrieval system for LSC’22. In: Proceedings of the 5th Annual on Lifelog Search Challenge, LSC 2022, pp. 32–37. Association for Computing Machinery, New York (2022)

    Google Scholar 

  23. Tulving, E.: Precis of elements of episodic memory. Behav. Brain Sci. 7(2), 223–238 (1984)

    Article  Google Scholar 

  24. Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with GPS history data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1029–1038 (2010)

    Google Scholar 

  25. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally meaningful places: an interactive clustering approach. ACM Trans. Inf. Syst. (TOIS) 25(3), 12-es (2007)

    Google Scholar 

  26. Zimmermann, M., Kirste, T., Spiliopoulou, M.: Finding stops in error-prone trajectories of moving objects with time-based clustering. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. CCIS, vol. 53, pp. 275–286. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10263-9_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ly-Duyen Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, LD., Nie, D., Zhou, L., Nguyen, B., Gurrin, C. (2023). VAISL: Visual-Aware Identification of Semantic Locations in Lifelog. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics