Skip to main content

Melanosome Origins, Diversity and Functional Relevance Across Animals

  • Chapter
  • First Online:
Melanins: Functions, Biotechnological Production, and Applications

Abstract

Melanosomes are important organelles melanin is produced stored and mobilized throughout animal tissues. Melanins confer unique properties to these organelles, including strong light absorption, antioxidant capabilities and mechanical stiffness. Melanosomes perform many essential functions across the animal tree. Several recent discoveries about the chemistry and melanosome ontogeny have emerged, but a broad comparative framework still is needed. This chapter reviews the hierarchical structure, development, functions and evolution of melanosomes. It focuses on variation in melanosome morphology, elucidation of melanosome chemistry as a whole and the relationships between them with the functions they perform. An attempt is made to integrate the knowledge gathered so far about the correlation between the formation of amyloid protein scaffolds and melanogenesis across animal groups to generate hypotheses on their evolution. From this perspective, melanosomes (membrane-bound) were most likely present in animals early since the origins of the immune system and at the origin of organelles. The remaining knowledge gaps are highlighted throughout the chapter and a review of the most recent advances in analytical techniques used to elucidate the physicochemical properties of individual melanosomes describes potential ways to advance our understanding of these still, enigmatic organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrup G, Hansson C, Rorsman H, Rosengren E (1981) The effect of cysteine on oxidation of tyrosine dopa, and cysteinyldopas. Arch Dermatol Res 272(1):103–115

    Article  Google Scholar 

  • Araujo M, Xavier JR, Nunes CD, Vaz PD, Humanes M (2012) Marine sponge melanin: a new source of an old biopolymer. Struct Chem 23:115–122

    Article  CAS  Google Scholar 

  • Aspengren S, Hedberg D, Wallin M (2006) Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo. Pigment Cell Res 19:136–145. https://doi.org/10.1111/j.1600-0749.2005.00290.x

    Article  CAS  PubMed  Google Scholar 

  • Ballarin L, Franchi N, Peronato A, Grimaldi A, Girardello R, de Eguileor M (2018) Amyloid and immune responses in the colonial ascidian Botryllus schlosseri. Invertebr Surviv J:124–124

    Google Scholar 

  • Beltrán DF, Shultz AJ, Parra JL (2021) Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution 75(7):1665–1680

    Article  PubMed  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40(12):845–859

    Article  CAS  PubMed  Google Scholar 

  • Bonser RHC (1995) Melanin and the abrasion resistance of feathers. Condor 97:590–591

    Article  Google Scholar 

  • Brink DJ, van der Berg NG (2004) Structural color from the feathers of the bird Bostrychia hagedash. J Phys D Appl Phys 37:813–818

    Article  CAS  Google Scholar 

  • Burtt EH Jr (1986) An analysis of physical, physiological, and optical aspects of avian coloration with emphasis on wood-warblers. Ornithol Monogr 38:1–128

    Google Scholar 

  • Bush WD, Simon JD (2007) Quantification of Ca2+ binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res 20(2):134–139

    Article  CAS  PubMed  Google Scholar 

  • Bustamante J, Bredeston L, Malanga G, Mordoh J (1993) Role of melanin as a scavenger of active oxygen species. Pigment Cell Res 6:348–353

    Article  CAS  PubMed  Google Scholar 

  • Butler M, Day A (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136. https://doi.org/10.1139/w98-119

    Article  CAS  Google Scholar 

  • Chatelain M, Gasparini J, Jacquin L, Frantz A (2014) The adaptive function of melanin-based plumage coloration to trace metals. Biol Lett 10(3):20140164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Prados-Rosales R, Tan S, Itin B, Casadevall A, Stark RE (2014) Demonstration of a common indole-based aromatic core in natural and synthetic eumelanins by solid-state NMR. Org Biomol Chem 12(34):6730–6736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CT, Chuang C, Cao J, Ball V, Ruch D, Buehler MJ (2014) Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat Commun 5:3859. https://doi.org/10.1038/ncomms4859

    Article  CAS  PubMed  Google Scholar 

  • Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ et al (2006) Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J Proteome Res 5(11):3135–3144

    Article  CAS  PubMed  Google Scholar 

  • Chiarelli-Neto O, Pavani C, Ferreira AS, Uchoa AF, Severino D, Baptista MS (2011) Generation and suppression of singlet oxygen in hair by photosensitization of melanin. Free Radic Biol Med 51:1195–1202. https://doi.org/10.1016/j.freeradbiomed.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  • Christensen BM, Forton KF (1986) Hemocyte-mediated melanization of microfilariae in Aedes aegypti. J Parasitol 72:220–225. https://doi.org/10.2307/3281595

    Article  CAS  PubMed  Google Scholar 

  • Chrystal PW, Footz T, Hodges ED, Jensen JA, Walter MA, Allison WT (2021) Functional domains and evolutionary history of the PMEL and GPNMB family proteins. Molecules 26(12):3529

    Article  PubMed  PubMed Central  Google Scholar 

  • Cincotta A, Nicolaï M, Campos HBN, McNamara M, D’Alba L, Shawkey MD, Kischlat EE, Yans J, Carleer R, Escuillié F, Godefroit P (2022) Pterosaur melanosomes support signalling functions for early feathers. Nature 604(7907):684–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements T, Dolocan A, Martin P et al (2016) The eyes of Tullimonstrum reveal a vertebrate affinity. Nature 532:500–503. https://doi.org/10.1038/nature17647

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Midling KØ (2007) Blood vessel melanosis: a physiological detoxification mechanism in Atlantic cod (Gadus morhua). Aquac Int 15(1):43–54

    Article  CAS  Google Scholar 

  • Cowles RB (1967) Black pigmentation: adaptation for concealment or heat conservation? Science 158(3806):1340–1341

    Article  CAS  PubMed  Google Scholar 

  • D’Alba L, Shawkey MD (2019) Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol Rev 99(1):1–19

    Article  PubMed  Google Scholar 

  • D’Alba L, Meadows M, Maia R, Yeo JS, Manceau M, Shawkey MD (2021) Morphogenesis of iridescent feathers in Anna’s hummingbird calypte anna. Integr Comp Biol 61(4):1502–1510

    Article  PubMed  Google Scholar 

  • Davis AL, Thomas KN, Goetz FE, Robison BH, Johnsen S, Osborn KJ (2020) Ultra-black camouflage in deep-sea fishes. Curr Biol 30(17):3470–3476

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439(7079):965–968

    Article  CAS  PubMed  Google Scholar 

  • Di Lelio I, Varricchio P, Di Prisco G, Marinelli A, Lasco V, Caccia S et al (2014) Functional analysis of an immune gene of Spodoptera littoralis by RNAi. J Insect Physiol 64:90–97

    Article  PubMed  Google Scholar 

  • Doucet SM (2006) Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 209:380–390

    Article  PubMed  Google Scholar 

  • Ducrest AL, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23(9):502–510

    Article  PubMed  Google Scholar 

  • Durrer H (1986) The skin of birds: colouration. In: Bereiter-Hahn J, Matolsky AG, Richards KS (eds) Biology of the integument 2, vertebrates, vol 2. Springer, Berlin, pp 239–247

    Chapter  Google Scholar 

  • Durrer H, Villiger W (1967) Bildung der Schillerstruktur beim Glanzstar. Elektronenmikroskopische Untersuchungen der Entstehung gasgefüllter Melaninkörner. Z Zellforsch Mikrosk Anat 81:445–456. https://doi.org/10.1007/BF00342767

    Article  CAS  PubMed  Google Scholar 

  • Eliason CM, Clarke JA (2018) Metabolic physiology explains macroevolutionary trends in the melanic colour system across amniotes. Proc R Soc B 285(1893):20182014

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliason CM, Shawkey MD (2012) A photonic heterostructure produces diverse iridescent colours in duck wing patches. J Royal Soc Interface 9:2279–2289

    Article  Google Scholar 

  • Eliason CM, Bitton PP, Shawkey MD (2013) How hollow melanosomes affect iridescent colour production in birds. Proc R Soc B Biol Sci 280(1767):20131505

    Article  Google Scholar 

  • Eliason CM, Maia R, Parra JL, Shawkey MD (2020) Signal evolution and morphological complexity in hummingbirds (Aves: Trochilidae). Evolution 74(2):447–458

    Article  PubMed  Google Scholar 

  • Falabella P, Riviello L, Pascale M, Di Lelio I, Tettamanti G, Grimaldi A et al (2012) Functional amyloids in insect immune response. Insect Biochem Mol Biol 42(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Felix CC, Hyde JS, Sarna T, Sealy RC (1978) Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J Am Chem Soc 100(12):3922–3926

    Article  CAS  Google Scholar 

  • Franchi N, Ballarin L (2017) Immunity in protochordates: the tunicate perspective. Front Immunol 8:674

    Article  PubMed  PubMed Central  Google Scholar 

  • Franchi N, Ballarin L, Peronato A, Cima F, Grimaldi A, Girardello R, de Eguileor M (2019) Functional amyloidogenesis in immunocytes from the colonial ascidian Botryllus schlosseri: evolutionary perspective. Dev Comp Immunol 90:108–120

    Article  CAS  PubMed  Google Scholar 

  • Freitas DF, Vieira-Da-Motta O, Mathias LDS, Franco RWDA, Gomes RDS, Vieira RAM et al (2019) Synthesis and role of melanin for tolerating in vitro rumen digestion in Duddingtonia flagrans, a nematode-trapping fungus. Mycology 10(4):229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyer P, Wilts BD, Stavenga DG (2021) Cortex thickness is key for the colors of iridescent starling feather barbules with a single, organized melanosome layer. Front Ecol Evol 9:746254

    Article  Google Scholar 

  • Furumura M, Sakai C, Potterf SB, Vieira WD, Barsh GS, Hearing VJ (1998) Characterization of genes modulated during pheomelanogenesis using differential display. Proc Natl Acad Sci U S A 95:7374–7378. https://doi.org/10.1073/pnas.95.13.7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galván I, Jorge A, Edelaar P, Wakamatsu K (2015) Insects synthesize pheomelanin. Pigment Cell Melanoma Res 28(5):599–602

    Article  PubMed  Google Scholar 

  • García AJ, Polidori C, Nieves-Aldrey JL (2016) Pheomelanin in the secondary sexual characters of male parasitoid wasps (Hymenoptera: Pteromalidae). Arthropod Struct Dev 45(4):311–319

    Article  Google Scholar 

  • Geremia E, Corsaro C, Baratta D, Santoro C, Scalia M, Sichel G (1989) Antioxidant enzymatic systems in pigment tissue of amphibia. Pigment Cell Res 2(3):208–212

    Article  CAS  PubMed  Google Scholar 

  • Girardello R, Tasselli S, Baranzini N, Valvassori R, de Eguileor M, Grimaldi A (2015) Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One 10(12):e0144361

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH Jr (2004) Bacterial degradation of black and white feathers. Auk 121:656–659

    Article  Google Scholar 

  • Greenewalt CH, Brandt W, Friel DD (1960) Iridescent colors of hummingbird feathers. J Opt Soc 50:1005

    Article  Google Scholar 

  • Grimaldi A, Girardello R, Malagoli D, Falabella P, Tettamanti G, Valvassori R, Ottaviani E, De Eguileor M (2012) Amyloid/melanin distinctive mark in invertebrate immunity. Invertebr Surviv J 9(2):153–162

    Google Scholar 

  • Han Y, Xie C, Fan N, Song H, Wang X, Zheng Y, Zhang M, Liu Y, Huang B, Wei L, Wang X (2022) Identification of melanin in the mantle of the Pacific oyster Crassostrea gigas. Front Mar Sci 31:9

    Google Scholar 

  • Hase S, Wakamatsu K, Fujimoto K, Inaba A, Kobayashi K, Matsumoto M et al (2006) Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell Res 19(3):248–249

    Article  CAS  PubMed  Google Scholar 

  • Hennessy A, Oh C, Diffey B, Wakamatsu K, Ito S, Rees J (2005) Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Res 18:220–223

    Article  CAS  PubMed  Google Scholar 

  • Heppner F (1970) The metabolic significance of differential absorption of radiant energy by black and white birds. Condor 72(1):50–59

    Article  Google Scholar 

  • Hoogduijn MJ, Smit NP, Van Der Laarse A, Van Nieuwpoort AF, Wood JM, Thody AJ (2003) Melanin has a role in Ca2+ homeostasis in human melanocytes. Pigment Cell Res 16(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Hurbain I, Geerts WJ, Boudier T, Marco S, Verkleij AJ, Marks MS, Raposo G (2008) Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci 105(50):19726–19731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16(5):523–531

    Article  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2008) Chemistry of mixed melanogenesis – pivotal roles of dopaquinone. Photochem Photobiol 84(3):582–592

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Sugumaran M, Wakamatsu K (2020) Chemical reactivities of ortho-quinones produced in living organisms: fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols. Int J Mol Sci 21(17):6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques SL, Glickman RD, Schwartz JA (1996) Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. In: Laser-tissue interaction VII, vol 2681. SPIE, pp 468–477

    Chapter  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216

    Article  CAS  PubMed  Google Scholar 

  • Jimbow K, Ishida O, Ito S, Hori Y, Witkop CJ Jr, King RA (1983) Combined chemical and electron microscopic studies of pheomelanosomes in human red hair. J Invest Dermatol 81:506–511. https://doi.org/10.1111/1523-1747.ep12522838

    Article  CAS  PubMed  Google Scholar 

  • Kabat AR, Hershler R (1993) The prosobranch snail family Hydrobiidae (Gastropoda: Rissooidea): review of classification and supraspecific taxa

    Google Scholar 

  • Kobayashi T, Urabe K, Winder A, Jiménez-Cervantes C, Imokawa G, Brewington T, Solano F, García-Borrón JC, Hearing VJ (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Imokawa G, Bennett DC, Hearing VJ (1998) Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem 273:31801–31805. https://doi.org/10.1074/jbc.27348.31801

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Vlcek C (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci 105(26):8989–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrus BG, Cochet-Escartin O, Gao J, Newmark PA, Collins EMS, Collins JJ III (2015) Tryptophan hydroxylase is required for eye melanogenesis in the planarian Schmidtea mediterranea. PLoS One 10(5):e0127074

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Clarke JA, Gao KQ, Zhou CF, Meng Q, Li D, D’Alba L, Shawkey MD (2014) Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507(7492):350–353

    Article  CAS  PubMed  Google Scholar 

  • Lindgren J, Nilsson DE, Sjövall P, Jarenmark M, Ito S, Wakamatsu K, Kear BP, Schultz BP, Sylvestersen RL, Madsen H, LaFountain JR (2019) Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573(7772):122–125

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng C-Y, Bowers CR, Simon JD (2005) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81:135–144. https://doi.org/10.1562/2004-08-03-RA-259.1

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Shawkey MD, Parkinson D, Ahmed M (2014) Elucidation of the chemical composition of avian melanin. R Soc Chem Adv 4:40396–40399

    CAS  Google Scholar 

  • Lustick S (1969) Bird energetics: effects of artificial radiation. Science 163(3865):387–390

    Article  CAS  PubMed  Google Scholar 

  • Lustick S, Talbot S, Fox EL (1970) Absorption of radiant energy in Redwinged Blackbirds (Agelaius phoeniceus). Condor 72(4):471–473

    Article  Google Scholar 

  • Maia R, Rubenstein DR, Shawkey MD (2013) Key ornamental innovations facilitate diversification in an avian radiation. Proc Natl Acad Sci 110(26):10687–10692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Recio P, Rodriguez-Ruiz G, Barja I, Gutierrez E, Garcia LV (2022) Relationships between soil pollution by heavy metals and melanin-dependent coloration of a fossorial amphisbaenian reptile. Integr Zool 17(4):596–607

    Article  CAS  PubMed  Google Scholar 

  • Matricon-Gondran M, Letocart M (1999) Internal defenses of the snail Biomphalaria glabrata: III. Observations on tubular helical filaments induced in the hemolymph by foreign material. J Invertebr Pathol 74(3):248–254

    Article  CAS  PubMed  Google Scholar 

  • Medenhall MJ, Nunez AS, Martin RK (2015) Human skin detection in the visible and near infrared. Appl Opt 54:10559–10570

    Article  Google Scholar 

  • Megía-Palma R, Jorge A, Reguera S (2018) Raman spectroscopy reveals the presence of both eumelanin and pheomelanin in the skin of lacertids. J Herpetol 52(1):67–73

    Article  Google Scholar 

  • Moretto HJ, Sánchez M, Vernet G (1988) The colour pattern of Lineus atrocaeruleus (Nemertia). Hydrobiologia 156(1):183–189

    Article  Google Scholar 

  • Moses DN, Harreld JH, Stucky GD, Waite JH (2006) Melanin and glycera jaws. J Biol Chem 281:34826–34832

    Article  CAS  PubMed  Google Scholar 

  • Mostert AB, Powell BJ, Pratt FL, Hanson GR, Sarna T, Gentle IR, Meredith P (2012) Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc Natl Acad Sci U S A 109:8943–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer FH (1966) Genetic variations in the fine structure and ontogeny of mouse melanin granules. Am Zool 6:43–66

    Article  CAS  PubMed  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One 3(3):e1811. https://doi.org/10.1371/journal.pone.0001811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35(5):443–459

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus BJR (2005) A critical review of the function of neuromelanin and an attempt to provide a unified theory. Med Hypotheses 65:791–796

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky MA, Zak PP, Dontsov AE (2018) Vertebrate eye melanosomes and invertebrate eye ommochromes as screening cell organelles. Biol Bull 45(6):570–579

    Article  Google Scholar 

  • Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2(6):347–353

    Article  CAS  PubMed  Google Scholar 

  • Pascale M, Laurino S, Vogel H, Grimaldi A, Monné M, Riviello L et al (2014) The Lepidopteran endoribonucleas e-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids. Dev Comp Immunol 47(1):129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peles DN, Simon JD (2010) Direct measurement of the ultraviolet absorption coefficient of single retinal melanosomes. Photochem Photobiol 86(2):279–281

    Article  CAS  PubMed  Google Scholar 

  • Peles DN, Simon JD (2011) UV-absorption spectra of melanosomes containing varying 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid content. J Phys Chem B 115(43):12624–12631

    Article  CAS  PubMed  Google Scholar 

  • Peles DN, Lin E, Wakamatsu K, Ito S, Simon JD (2010) Ultraviolet absorption coefficients of melanosomes containing eumelanin as related to the relative content of DHI and DHICA. J Phys Chem Lett 1(15):2391–2395

    Article  CAS  Google Scholar 

  • Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM (2003) Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser 264:167–171

    Article  Google Scholar 

  • Polacheck I, Kwon-Chung KJ (1988) Melanogenesis in Cryptococcus neoformans. J Gen Microbiol 134:1037–1041

    CAS  PubMed  Google Scholar 

  • Prota G (1988) Progress in the chemistry of melanins and related metabolites. Med Res Rev 8:525–556

    Article  CAS  PubMed  Google Scholar 

  • Prum R (2006) Anatomy, physics, and evolution of structural colors. In: Hill GE, KJ MG (eds) Bird coloration: mechanisms and measurements, vol 1. Harvard University Press, Cambridge, pp 295–353

    Google Scholar 

  • Raposo G, Marks MS (2007) Melanosomes–dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 8:786–797. https://doi.org/10.1038/nrm2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe NA, Gagen SJ (1977) Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9:73–85. https://doi.org/10.1016/0040-8166(77)90050-7

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe NA, Whitten MMA (2004) Vector immunity in microbe-vector interactions. In: Gillespie SH, Osbourn A, Smith GL (eds) Vector-borne diseases. SGM symposium, pp 199–262

    Google Scholar 

  • Rogalla S, Patil A, Dhinojwala A, Shawkey MD, D'Alba L (2021) Enhanced photothermal absorption in iridescent feathers. J R Soc Interface 18(181):20210252

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers CS, Astrop TI, Webb SM, Ito S, Wakamatsu K, McNamara ME (2019) Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum. Proc R Soc B 286(1913):20191649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi V, McNamara ME, Webb SM, Ito S, Wakamatsu K (2019) Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc Natl Acad Sci 116(36):17880–17889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulin A, Mafli A, Wakamatsu K (2013) Reptiles produce pheomelanin: evidence in the eastern Hermann’s tortoise (Eurotestudo boettgeri). J Herpetol 47(2):258–261

    Article  Google Scholar 

  • Schraermeyer U (1994) Fine structure of melanogenesis in the ink sac of Sepia offidnalis. Pigment Cell Res 7(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Shawkey MD, Hill GE (2006) Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J Exp Biol 209(7):1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Shawkey MD, Morehouse NI, Vukusic P (2009) A protean palette: colour materials and mixing in birds and butterflies. J R Soc Interface 6(Suppl 2):S221–S231. https://doi.org/10.1098/rsif.2008.0459.focus

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, D’Alba L, Xiao M, Schutte M, Buchholz R (2015) Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J Morphol 276:378–384. https://doi.org/10.1002/jmor.20347

    Article  PubMed  Google Scholar 

  • Shawkey MD, Igic B, Rogalla S, Goldenberg J, Clusella-Trullas S, D’Alba L (2017) Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae). Sci Nat 104:1–5

    Article  CAS  Google Scholar 

  • Simon JD, Peles DN (2010) The red and the black. Acc Chem Res 43(11):1452–1460

    Article  CAS  PubMed  Google Scholar 

  • Simon JD, Goldsmith MR, Hong L, Kempf VR, McGuckin LE, Ye T, Zuber G (2006) Spectroscopy and photoreactivity of trichochromes: molecular components of pheomelanins. Photochem Photobiol 82(1):318–323

    Article  CAS  PubMed  Google Scholar 

  • Simon JD, Hong L, Peles DN (2008) Insights into melanosomes and melanin from some interesting spatial and temporal properties. J Phys Chem B 112(42):13201–13217

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Nizard C, Kurfurst R, Bonte F, Schnebert S, Tobin DJ (2008) The silver locus product (Silv/gp100/Pmel17) as a new tool for the analysis of melanosome transfer in human melanocyte-keratinocyte co-culture. Exp Dermatol 17:418–426. https://doi.org/10.1111/j.1600-0625.2008.00702.x

    Article  PubMed  Google Scholar 

  • Sköld HN, Aspengren S, Wallin M (2013) Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell Melanoma Res 26(1):29–38. https://doi.org/10.1111/pcmr.12040

    Article  Google Scholar 

  • Speiser DI, DeMartini DG, Oakley TH (2014) The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J Nat Hist 48:2899–2911

    Article  Google Scholar 

  • Stanic V, Maia FCB, de Oliveira Freitas R, Montoro FE, Evans-Lutterodt K (2018) The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy. Nanoscale 10(29):14245–14253

    Article  CAS  PubMed  Google Scholar 

  • Stavenga DG, Leertouwer HL, Hariyama T, Raedt HAD, Wilts BD (2012) Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins. PLoS One 7

    Google Scholar 

  • Stavenga DG, Leertouwer HL, Osorio DC, Wilts BD (2015) High refractive index of melanin in shiny occipital feathers of a bird of paradise. Light: Sci Appl 4:e243

    Article  Google Scholar 

  • Thureau P, Ziarelli F, Thévand A, Martin RW, Farmer PJ, Viel S, Mollica G (2012) Probing the motional behavior of eumelanin and pheomelanin with solid-state NMR spectroscopy: new insights into the pigment properties. Chem Eur J 18(34):10689–10700

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Garcia-Rivera J, Yan B, Casadevall A, Stark RE (2003) Unlocking the molecular structure of fungal melanin using 13C biosynthetic labeling and solid-state NMR. Biochemistry 42(27):8105–8109

    Article  CAS  PubMed  Google Scholar 

  • Vopalensky P, Kozmik Z (2009) Eye evolution: common use and independent recruitment of genetic components. Philos Trans R Soc B 364:2819–2832

    Article  CAS  Google Scholar 

  • Wakamatsu K, Nagao A, Watanabe M, Nakao K, Ito S (2017) Pheomelanogenesis is promoted at a weakly acidic pH. Pigment Cell Melanoma Res 30:372–377. https://doi.org/10.1111/pcmr.12587

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Guo Z (2017) Biomimetic superwettable materials with structural colours. Chem Commun 53(97):12990–13011

    Article  CAS  Google Scholar 

  • Whitten MM, Coates CJ (2017) Re-evaluation of insect melanogenesis research: views from the dark side. Pigment Cell Melanoma Res 30(4):386–401

    Article  CAS  PubMed  Google Scholar 

  • Wolbarsht ML, Walsh AW, George G (1981) Melanin, a unique biological absorber. Appl Opt 20(13):2184–2186

    Article  CAS  PubMed  Google Scholar 

  • Wolf BO, Walsberg GE (2000) The role of the plumage in heat transfer processes of birds. Am Zool 40(4):575–584

    Google Scholar 

  • Wolnicka-Glubisz A, Pecio A, Podkowa D, Kolodziejczyk LM, Plonka PM (2012) Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Exp Dermatol 21(7):537–540

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Hammer JA (2014) Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 29:1–7. https://doi.org/10.1016/j.ceb.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  • Wu XS, Martina JA, Hammer JA III (2012) Melanoregulin is stably targeted to the melanosome membrane by palmitoylation. Biochem Biophys Res Commun 426(2):209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M, Dhinojwala A, Shawkey M (2014) Nanostructural basis of rainbow-likeiridescence in common bronzewing Phaps chalcoptera feathers. Opt Express 22:14625

    Article  PubMed  Google Scholar 

  • Xiao M, Li Y, Allen MC, Deheyn DD, Yue X, Zhao J, Gianneschi NC, Shawkey MD, Dhinojwala A (2015) Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano 9:5454–5460

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Hu Z, Wang Z, Li Y, Tormo AD, Le Thomas N, Wang B, Gianneschi NC, Shawkey MD, Dhinojwala A (2017) Bioinspired bright noniridescent photonic melanin supraballs. Sci Adv 3(9):e1701151

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing L, Sun L, Liu S, Li X, Miao T, Zhang L, Yang H (2017) Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus. Acta Oceanol Sin 36:45–51

    Article  CAS  Google Scholar 

  • Zhao H, Yang H, Zhao H, Liu S, Wang T (2012) Differences in MITF gene expression and histology between albino and normal sea cucumbers (Apostichopus japonicus Selenka). Chin J Oceanol Limnol 30(1):80

    Article  CAS  Google Scholar 

  • Zonios G, Dimou A, Bassukas I, Galaris D, Tsolakidis A, Kaxiras E (2008) Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J Biomed Opt 13(1):014017

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana D’Alba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Alba, L. (2023). Melanosome Origins, Diversity and Functional Relevance Across Animals. In: Gosset, G. (eds) Melanins: Functions, Biotechnological Production, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-27799-3_3

Download citation

Publish with us

Policies and ethics