Skip to main content

Below Knee Amputation: Techniques to Improve Rehabilitation, Pain Management, and Function

  • Chapter
  • First Online:
Functional Limb Salvage

Abstract

As patients in the USA present for transtibial or below knee amputations (BKAs), several steps should be implemented to improve functionality, rehabilitation, pain and improve patient outcomes. It is paramount to implement a multidisciplinary treatment plan that addresses medical, psychological, social, and financial issues in order to decrease postoperative morbidity after BKA. When possible, perioperative plans should be developed early and in collaboration with a multidisciplinary team. Successful patient outcomes necessitate effective communication between surgeons, anesthesiologists, acute pain teams, pharmacy, physical therapy, occupational therapy, nutrition, and social work. The purpose of this chapter is to discuss the techniques we have found from our experience that improve patient rehabilitation, pain management, and functional outcomes after BKA. The chapter is organized into several sections. First, we give an overview of the etiologies, indications, and contraindications of BKAs. Then, we discuss the anatomy and surgical considerations and techniques to optimize pain control after BKA. Next, we delve into the morbidities associated with BKA—pain—and the various treatment modalities to address it. This is followed by a discussion on surgical interventions to treat neuromas and other multidisciplinary options such as nutritional support, physical therapy, and prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9. Accessed Dec 31, 2020. https://doi.org/10.1016/j.apmr.2007.11.005.

    Article  PubMed  Google Scholar 

  2. Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb deficiency: Epidemiology and recent trends in the United States. South Med J. 2002;95(8):875–83. Accessed Dec 31, 2020. https://doi.org/10.1097/00007611-200208000-00018.

    Article  PubMed  Google Scholar 

  3. Smith DG. Amputation. preoperative assessment and lower extremity surgical techniques. Foot Ankle Clin. 2001;6(2):271–96. Accessed Dec 31, 2020. https://doi.org/10.1016/s1083-7515(03)00096-2.

    Article  CAS  PubMed  Google Scholar 

  4. Ghazali MF. Awareness, potential factors, and post-amputation care of stump flexion contractures among transtibial amputees. Turk J Phys Med Rehabil. 2018;64(3):268–76. https://search.datacite.org/works/10.5606/tftrd.2018.1668. https://doi.org/10.5606/tftrd.2018.1668.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crowe CS, Impastato KA, Donaghy AC, Earl C, Friedly JL, Keys KA. Prosthetic and orthotic options for lower extremity amputation and reconstruction. Plast Aesthet Res. 2019;6:4. https://parjournal.net/article/view/2987. Accessed Dec 31, 2020. https://doi.org/10.20517/2347-9264.2018.70.

    Article  Google Scholar 

  6. Hong CC, Tan JH, Lim SH, Nather A. Multiple limb salvage attempts for diabetic foot infections: Is it worth it? Bone Joint J. 2017;99-B(11):1502–7. Accessed Dec 31, 2020. https://doi.org/10.1302/0301-620X.99B11.BJJ-2016-0793.R2.

    Article  CAS  PubMed  Google Scholar 

  7. Narula N, Dannenberg AJ, Olin JW, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72(18):2152–63. Accessed Dec 31, 2020. https://doi.org/10.1016/j.jacc.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  8. Harris AM, Althausen PL, Kellam J, Bosse MJ, Castillo R. Complications following limb-threatening lower extremity trauma. J Orthop Trauma. 2009;23(1):1–6. Accessed Dec 31, 2020. https://doi.org/10.1097/BOT.0b013e31818e43dd.

    Article  PubMed  Google Scholar 

  9. Busse JW, Jacobs CL, Swiontkowski MF, Bosse MJ, Bhandari M. Complex limb salvage or early amputation for severe lower-limb injury: A meta-analysis of observational studies. J Orthop Trauma. 2007;21(1):70–6. Accessed Dec 31, 2020. https://doi.org/10.1097/BOT.0b013e31802cbc43.

    Article  PubMed  Google Scholar 

  10. Amputation, prosthesis use, and phantom limb pain: An interdisciplinary perspective. New York: Springer-Verlag; 2010. https://www.springer.com/gp/book/9780387874616. Accessed Jan 26, 2021.

  11. Neil M. Pain after amputation. BJA Education. 2016;16(3):107–12. https://doi.org/10.1093/bjaed/mkv028. Accessed Jan 6, 2021

    Article  Google Scholar 

  12. Baumfeld D, Baumfeld T, Macedo B, Zambelli R, Lopes F, Nery C. Factors related to amputation level and wound healing in diabetic patients. Acta Ortop Bras. 2018;26(5):342–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220668/. Accessed Jan 6, 2021. https://doi.org/10.1590/1413-785220182605173445.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hong JP. Reconstructive surgery: Lower extremity coverage. In: Plastic surgery: Volume 4: Lower extremity, trunk, and burns. 4th ed. Philadelphia, PA: Elsevier; 2018. p. 118–142.e3. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323357067000051?scrollTo=%23hl0000422. Accessed Jan 6, 2021.

    Google Scholar 

  14. Pinzur MS, Cox W, Kaiser J, Morris T, Patwardhan A, Vrbos L. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: A preliminary report. J Rehabil Res Dev. 1995;32(4):373–7. Accessed Jan 26, 2021

    CAS  PubMed  Google Scholar 

  15. Chow DHK, Holmes AD, Lee CKL, Sin SW. The effect of prosthesis alignment on the symmetry of gait in subjects with unilateral transtibial amputation. Prosthetics Orthot Int. 2006;30(2):114–28. Accessed Jan 26, 2021. https://doi.org/10.1080/03093640600568617.

    Article  Google Scholar 

  16. Rauck RL, Cohen SP, Gilmore CA, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2014;17(2):188–97. Accessed Jan 1, 2021. https://doi.org/10.1111/ner.12102.

    Article  PubMed  Google Scholar 

  17. Sadosky A, McDermott AM, Brandenburg NA, Strauss M. A review of the epidemiology of painful diabetic peripheral neuropathy, postherpetic neuralgia, and less commonly studied neuropathic pain conditions. Pain Pract. 2008;8(1):45–56. Accessed Jan 1, 2021. https://doi.org/10.1111/j.1533-2500.2007.00164.x.

    Article  PubMed  Google Scholar 

  18. Hsu E, Cohen SP. Postamputation pain: Epidemiology, mechanisms, and treatment. J Pain Res. 2013;6:121–36. Accessed Jan 6, 2021. https://doi.org/10.2147/JPR.S32299.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuffler DP. Coping with phantom limb pain. Mol Neurobiol. 2018;55(1):70–84. Accessed Jan 6, 2021. https://doi.org/10.1007/s12035-017-0718-9.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen TS, Krebs B, Nielsen J, Rasmussen P. Immediate and long-term phantom limb pain in amputees: Incidence, clinical characteristics and relationship to pre-amputation limb pain. Pain. 1985;21(3):267–78. Accessed Jan 6, 2021. https://doi.org/10.1016/0304-3959(85)90090-9.

    Article  PubMed  Google Scholar 

  21. Jensen TS, Krebs B, Nielsen J, Rasmussen P. Phantom limb, phantom pain and stump pain in amputees during the first 6 months following limb amputation. Pain. 1983;17(3):243–56. Accessed Jan 6, 2021. https://doi.org/10.1016/0304-3959(83)90097-0.

    Article  PubMed  Google Scholar 

  22. Pierce RO, Kernek CB, Ambrose TA. The plight of the traumatic amputee. Orthopedics. 1993;16(7):793–7. Accessed Jan 6, 2021

    Article  PubMed  Google Scholar 

  23. Ducic I, Mesbahi AN, Attinger CE, Graw K. The role of peripheral nerve surgery in the treatment of chronic pain associated with amputation stumps. Plast Reconstr Surg. 2008;121(3):908–17. Accessed Jan 6, 2021. https://doi.org/10.1097/01.prs.0000299281.57480.77.

    Article  CAS  PubMed  Google Scholar 

  24. Bueno RA Jr, Neumeister MW. Pain management in plastic surgery an issue of clinics in plastic surgery, E-book. Amsterdam: Elsevier Health Sciences; 2020. Accessed Jan 6, 2021

    Google Scholar 

  25. Menorca RMG, Fussell TS, Elfar JC. Peripheral nerve trauma: Mechanisms of injury and recovery. Hand Clin. 2013;29(3):317–30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408553/. Accessed Jan 6, 2021. https://doi.org/10.1016/j.hcl.2013.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. BioMed Research International Web site. https://www.hindawi.com/journals/bmri/2014/698256/. Updated 2014. Accessed Jan 6, 2021.

  27. Mackinnon SE, Dellon AL, Hudson AR, Hunter DA. Alteration of neuroma formation by manipulation of its microenvironment. Plast Reconstr Surg. 1985;76(3):345–53. Accessed Jan 6, 2021. https://doi.org/10.1097/00006534-198509000-00001.

    Article  CAS  PubMed  Google Scholar 

  28. Weeks SR, Anderson-Barnes VC, Tsao JW. Phantom limb pain: Theories and therapies. Neurologist. 2010;16(5):277–86. Accessed Jan 6, 2021. https://doi.org/10.1097/NRL.0b013e3181edf128.

    Article  PubMed  Google Scholar 

  29. Mitchell SW. Injuries of nerves and their consequences. Am J Med Sci. 1872;64(127):229–32. insights.ovid.com. Accessed Jan 6, 2021

    Article  Google Scholar 

  30. Trevelyan EG, Turner WA, Robinson N. Perceptions of phantom limb pain in lower limb amputees and its effect on quality of life: A qualitative study. Br J Pain. 2016;10(2):70–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977953/. Accessed Jan 6, 2021. https://doi.org/10.1177/2049463715590884.

    Article  PubMed  Google Scholar 

  31. Karanikolas M, Aretha D, Tsolakis I, et al. Optimized perioperative analgesia reduces chronic phantom limb pain intensity, prevalence, and frequency: A prospective, randomized, clinical trial. Anesthesiology. 2011;114(5):1144–54. Accessed Jan 6, 2021. https://doi.org/10.1097/ALN.0b013e31820fc7d2.

    Article  CAS  PubMed  Google Scholar 

  32. Hanley MA, Jensen MP, Smith DG, Ehde DM, Edwards WT, Robinson LR. Preamputation pain and acute pain predict chronic pain after lower extremity amputation. J Pain. 2007;8(2):102–9. Accessed Jan 6, 2021. https://doi.org/10.1016/j.jpain.2006.06.004.

    Article  PubMed  Google Scholar 

  33. Nissen SJ, Newman WP. Factors influencing reintegration to normal living after amputation. Arch Phys Med Rehabil. 1992;73(6):548–51. Accessed Jan 6, 2021

    CAS  PubMed  Google Scholar 

  34. Desmond DM, MacLachlan M. Affective distress and amputation-related pain among older men with long-term, traumatic limb amputations. J Pain Symptom Manag. 2006;31(4):362–8. http://www.sciencedirect.com/science/article/pii/S0885392406000479. Accessed Jan 6, 2021. https://doi.org/10.1016/j.jpainsymman.2005.08.014.

    Article  Google Scholar 

  35. Fitzpatrick MC. The psychologic assessment and psychosocial recovery of the patient with an amputation. Clin Orthop Relat Res. 1999;361:98–107. Accessed Jan 6, 2021. https://doi.org/10.1097/00003086-199904000-00014.

    Article  Google Scholar 

  36. Buckenmaier C, Mahoney PF, Anton T, Kwon N, Polomano RC. Impact of an acute pain service on pain outcomes with combat-injured soldiers at Camp Bastion, Afghanistan. Pain Med. 2012;13(7):919–26. Accessed Jan 6, 2021. https://doi.org/10.1111/j.1526-4637.2012.01382.x.

    Article  PubMed  Google Scholar 

  37. Chou R, Gordon DB, de Leon-Casasola OA, et al. Management of postoperative pain: A clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57. Accessed Jan 6, 2021. https://doi.org/10.1016/j.jpain.2015.12.008.

    Article  PubMed  Google Scholar 

  38. Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–86. Accessed Jan 6, 2021. https://doi.org/10.1098/rspb.1996.0058.

    Article  CAS  PubMed  Google Scholar 

  39. Bowen JB, Wee CE, Kalik J, Valerio IL. Targeted muscle reinnervation to improve pain, prosthetic tolerance, and bioprosthetic outcomes in the amputee. Adv Wound Care (New Rochelle). 2017;6(8):261–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564002/. Accessed Jan 6, 2021. https://doi.org/10.1089/wound.2016.0717.

    Article  PubMed  Google Scholar 

  40. Tintle SM, Donohue MA, Shawen S, Forsberg JA, Potter BK. Proximal sural traction neurectomy during transtibial amputations. J Orthop Trauma. 2012;26(2):123–6. https://journals.lww.com/jorthotrauma/Abstract/2012/02000/Proximal_Sural_Traction_Neurectomy_During.10.aspx. Accessed Jan 26, 2021. https://doi.org/10.1097/BOT.0b013e318214fd7b.

    Article  PubMed  Google Scholar 

  41. Pet MA, Ko JH, Friedly JL, Smith DG. Traction neurectomy for treatment of painful residual limb neuroma in lower extremity amputees. J Orthop Trauma. 2015;29(9):e321. https://journals.lww.com/jorthotrauma/Abstract/2015/09000/Traction_Neurectomy_for_Treatment_of_Painful.16.aspx. Accessed Jan 26, 2021. https://doi.org/10.1097/BOT.0000000000000337.

    Article  PubMed  Google Scholar 

  42. O’Shaughnessy KD, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield K, Kuiken TA. Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am. 2008;90(2):393–400. Accessed Jan 6, 2021. https://doi.org/10.2106/JBJS.G.00268.

    Article  PubMed  Google Scholar 

  43. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28(3):245–53. Accessed Jan 6, 2021. https://doi.org/10.3109/03093640409167756.

    Article  CAS  Google Scholar 

  44. Kuiken TA, Miller LA, Lipschutz RD, et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet. 2007;369(9559):371–80. Accessed Jan 6, 2021. https://doi.org/10.1016/S0140-6736(07)60193-7.

    Article  PubMed  Google Scholar 

  45. Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036162/. Accessed Jan 6, 2021. https://doi.org/10.1001/jama.2009.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dumanian GA, Ko JH, O’Shaughnessy KD, Kim PS, Wilson CJ, Kuiken TA. Targeted reinnervation for transhumeral amputees: Current surgical technique and update on results. Plast Reconstr Surg. 2009;124(3):863–9. Accessed Jan 6, 2021. https://doi.org/10.1097/PRS.0b013e3181b038c9.

    Article  CAS  PubMed  Google Scholar 

  47. Hijjawi JB, Kuiken TA, Lipschutz RD, Miller LA, Stubblefield KA, Dumanian GA. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg. 2006;118(7):1573–8. Accessed Jan 6, 2021. https://doi.org/10.1097/01.prs.0000242487.62487.fb.

    Article  CAS  PubMed  Google Scholar 

  48. Chang BL, Mondshine J, Attinger CE, Kleiber GM. Targeted muscle reinnervation improves pain and ambulation outcomes in highly comorbid amputees. Plast Reconstr Surg. 2021;148(2):376–86. https://doi.org/10.1097/PRS.0000000000008153. PMID: 34398088.

  49. Ayling OGS, Montbriand J, Jiang J, et al. Continuous regional anaesthesia provides effective pain management and reduces opioid requirement following major lower limb amputation. Eur J Vasc Endovasc Surg. 2014;48(5):559–64. Accessed Jan 6, 2021. https://doi.org/10.1016/j.ejvs.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  50. McCormick Z, Chang-Chien G, Marshall B, Huang M, Harden RN. Phantom limb pain: A systematic neuroanatomical-based review of pharmacologic treatment. Pain Med. 2014;15(2):292–305. Accessed Jan 6, 2021. https://doi.org/10.1111/pme.12283.

    Article  PubMed  Google Scholar 

  51. Falzone E, Hoffmann C, Keita H. Postoperative analgesia in elderly patients. Drugs Aging. 2013;30(2):81–90. Accessed Jan 6, 2021. https://doi.org/10.1007/s40266-012-0047-7.

    Article  CAS  PubMed  Google Scholar 

  52. Byrne K, Nolan A, Barnard J, Tozer M, Harris D, Sleigh J. Managing postoperative analgesic failure: Tramadol versus morphine for refractory pain in the post-operative recovery unit. Pain Med. 2017;18(2):348–55. Accessed Jan 6, 2021. https://doi.org/10.1093/pm/pnw084.

    Article  PubMed  Google Scholar 

  53. Hayes C, Armstrong-Brown A, Burstal R. Perioperative intravenous ketamine infusion for the prevention of persistent post-amputation pain: A randomized, controlled trial. Anaesth Intensive Care. 2004;32(3):330–8. Accessed Jan 6, 2021. https://doi.org/10.1177/0310057X0403200305.

    Article  CAS  PubMed  Google Scholar 

  54. Abbass K. Efficacy of gabapentin for treatment of adults with phantom limb pain. Ann Pharmacother. 2012;46(12):1707–11. Accessed Jan 6, 2021. https://doi.org/10.1345/aph.1Q793.

    Article  CAS  PubMed  Google Scholar 

  55. Spiegel DR, Lappinen E, Gottlieb M. A presumed case of phantom limb pain treated successfully with duloxetine and pregabalin. Gen Hosp Psychiatry. 2010;32(2):228.e5-7. Accessed Jan 6, 2021. https://doi.org/10.1016/j.genhosppsych.2009.05.012.

    Article  PubMed  Google Scholar 

  56. Singh RK, Sinha VP, Pal US, Yadav SC, Singh MK. Pregabalin in post traumatic neuropathic pain: Case studies. Natl J Maxillofac Surg. 2012;3(1):91–5. Accessed Jan 6, 2021. https://doi.org/10.4103/0975-5950.102175.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bone M, Critchley P, Buggy DJ. Gabapentin in postamputation phantom limb pain: A randomized, double-blind, placebo-controlled, cross-over study. Reg Anesth Pain Med. 2002;27(5):481–6. Accessed Jan 6, 2021. https://doi.org/10.1053/rapm.2002.35169.

    Article  CAS  PubMed  Google Scholar 

  58. Hagenacker T, Ledwig D, Büsselberg D. Additive inhibitory effects of calcitonin and capsaicin on voltage activated calcium channel currents in nociceptive neurones of rat. Brain Res Bull. 2011;85(1-2):75–80. Accessed Jan 6, 2021. https://doi.org/10.1016/j.brainresbull.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  59. Wall GC, Heyneman CA. Calcitonin in phantom limb pain. Ann Pharmacother. 1999;33(4):499–501. Accessed Jan 6, 2021. https://doi.org/10.1345/aph.18204.

    Article  CAS  PubMed  Google Scholar 

  60. Yousef AA, Aborahma AM. The preventive value of epidural calcitonin in patients with lower limb amputation. Pain Med. 2017;18(9):1745–51. Accessed Jan 6, 2021. https://doi.org/10.1093/pm/pnw249.

    Article  PubMed  Google Scholar 

  61. Alviar MJM, Hale T, Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev. 2016;10:CD006380. Accessed Jan 6, 2021. https://doi.org/10.1002/14651858.CD006380.pub3.

    Article  PubMed  Google Scholar 

  62. Macario A, Royal MA. A literature review of randomized clinical trials of intravenous acetaminophen (paracetamol) for acute postoperative pain. Pain Pract. 2011;11(3):290–6. Accessed Jan 6, 2021. https://doi.org/10.1111/j.1533-2500.2010.00426.x.

    Article  PubMed  Google Scholar 

  63. Jahangiri M, Jayatunga AP, Bradley JW, Dark CH. Prevention of phantom pain after major lower limb amputation by epidural infusion of diamorphine, clonidine and bupivacaine. Ann R Coll Surg Engl. 1994;76(5):324–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2502366/. Accessed Jan 6, 2021

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Srivastava D. Chronic post-amputation pain: Peri-operative management—review. Br J Pain. 2017;11(4):192–202. Accessed Jan 6, 2021. https://doi.org/10.1177/2049463717736492.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lambert AW, Dashfield AK, Cosgrove C, Wilkins DC, Walker AJ, Ashley S. Randomized prospective study comparing preoperative epidural and intraoperative perineural analgesia for the prevention of postoperative stump and phantom limb pain following major amputation. Reg Anesth Pain Med. 2001;26(4):316–21. Accessed Jan 6, 2021. https://doi.org/10.1053/rapm.2001.23934.

    Article  Google Scholar 

  66. Ong BY, Arneja A, Ong EW. Effects of anesthesia on pain after lower-limb amputation. J Clin Anesth. 2006;18(8):600–4. Accessed Jan 6, 2021. https://doi.org/10.1016/j.jclinane.2006.03.021.

    Article  PubMed  Google Scholar 

  67. Wilson JA, Nimmo AF, Fleetwood-Walker SM, Colvin LA. A randomised double blind trial of the effect of pre-emptive epidural ketamine on persistent pain after lower limb amputation. Pain. 2008;135(1-2):108–18. Accessed Jan 6, 2021. https://doi.org/10.1016/j.pain.2007.05.011.

    Article  CAS  PubMed  Google Scholar 

  68. Sahin SH, Colak A, Arar C, et al. A retrospective trial comparing the effects of different anesthetic techniques on phantom pain after lower limb amputation. Curr Ther Res Clin Exp. 2011;72(3):127–37. Accessed Jan 6, 2021. https://doi.org/10.1016/j.curtheres.2011.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Grant AJ, Wood C. The effect of intra-neural local anaesthetic infusion on pain following major lower limb amputation. Scott Med J. 2008;53(1):4–6. Accessed Jan 6, 2021. https://doi.org/10.1258/RSMSMJ.53.1.4.

    Article  CAS  PubMed  Google Scholar 

  70. Malawer MM, Buch R, Khurana JS, Garvey T, Rice L. Postoperative infusional continuous regional analgesia. A technique for relief of postoperative pain following major extremity surgery. Clin Orthop Relat Res. 1991;266:227–37. Accessed Jan 6, 2021

    Article  Google Scholar 

  71. Fisher A, Meller Y. Continuous postoperative regional analgesia by nerve sheath block for amputation surgery--a pilot study. Anesth Analg. 1991;72(3):300–3. Accessed Jan 6, 2021. https://doi.org/10.1213/00000539-199103000-00004.

    Article  CAS  PubMed  Google Scholar 

  72. Borghi B, D'Addabbo M, White PF, et al. The use of prolonged peripheral neural blockade after lower extremity amputation: The effect on symptoms associated with phantom limb syndrome. Anesth Analg. 2010;111(5):1308–15. Accessed Jan 6, 2021. https://doi.org/10.1213/ANE.0b013e3181f4e848.

    Article  PubMed  Google Scholar 

  73. Elizaga AM, Smith DG, Sharar SR, Edwards WT, Hansen ST. Continuous regional analgesia by intraneural block: Effect on postoperative opioid requirements and phantom limb pain following amputation. J Rehabil Res Dev. 1994;31(3):179–87. Accessed Jan 6, 2021

    CAS  PubMed  Google Scholar 

  74. Pinzur MS, Garla PG, Pluth T, Vrbos L. Continuous postoperative infusion of a regional anesthetic after an amputation of the lower extremity. A randomized clinical trial. J Bone Joint Surg Am. 1996;78(10):1501–5. Accessed Jan 6, 2021. https://doi.org/10.2106/00004623-199610000-00007.

    Article  CAS  PubMed  Google Scholar 

  75. De Jong R, Shysh AJ. Development of a multimodal analgesia protocol for perioperative acute pain management for lower limb amputation. Pain Res Manag. 2018;2018:5237040. . Accessed Jan 6, 2021. https://doi.org/10.1155/2018/5237040.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mckechnie PS, John A. Anxiety and depression following traumatic limb amputation: A systematic review. Injury. 2014;45(12):1859–66. Accessed Jan 6, 2021. https://doi.org/10.1016/j.injury.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  77. Castelnuovo G, Giusti EM, Manzoni GM, et al. Psychological treatments and psychotherapies in the neurorehabilitation of pain: Evidences and recommendations from the Italian consensus conference on pain in neurorehabilitation. Front Psychol. 2016;7:115. Accessed Jan 6, 2021. https://doi.org/10.3389/fpsyg.2016.00115.

    Article  PubMed  PubMed Central  Google Scholar 

  78. West SL, McMahon BT, Monasterio E, Belongia L, Kramer K. Workplace discrimination and missing limbs: The national EEOC ADA research project. Work. 2005;25(1):27–35. Accessed Jan 26, 2021

    PubMed  Google Scholar 

  79. Adams CT, Lakra A. Below knee amputation. In: StatPearls. Treasure Island. FL: StatPearls Publishing; 2020. http://www.ncbi.nlm.nih.gov/books/NBK534773/. Accessed Jan 6, 2021.

    Google Scholar 

  80. Gillis C, Wischmeyer PE. Pre-operative nutrition and the elective surgical patient: Why, how and what? Anaesthesia. 2019;74(Suppl 1):27–35. Accessed Jan 26, 2021. https://doi.org/10.1111/anae.14506.

    Article  PubMed  Google Scholar 

  81. Beyaz S, Güler ÜÖ, Bağır GŞ. Factors affecting lifespan following below-knee amputation in diabetic patients. Acta Orthop Traumatol Turc. 2017;51(5):393–7. Accessed Jan 6, 2021. https://doi.org/10.1016/j.aott.2017.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Johns N, Hartwell H, Morgan M. Improving the provision of meals in hospital. the patients' viewpoint. Appetite. 2010;54(1):181–5. Accessed Jan 6, 2021. https://doi.org/10.1016/j.appet.2009.10.005.

    Article  PubMed  Google Scholar 

  83. Cooper C, Burden ST, Molassiotis A. An explorative study of the views and experiences of food and weight loss in patients with operable pancreatic cancer perioperatively and following surgical intervention. Support Care Cancer. 2015;23(4):1025–33. Accessed Jan 6, 2021. https://doi.org/10.1007/s00520-014-2455-1.

    Article  CAS  PubMed  Google Scholar 

  84. Holst M, Rasmussen HH, Laursen BS. Can the patient perspective contribute to quality of nutritional care? Scand J Caring Sci. 2011;25(1):176–84. Accessed Jan 6, 2021. https://doi.org/10.1111/j.1471-6712.2010.00808.x.

    Article  PubMed  Google Scholar 

  85. Geertzen J, van der Linde H, Rosenbrand K, et al. Dutch evidence-based guidelines for amputation and prosthetics of the lower extremity: Rehabilitation process and prosthetics. part 2. Prosthetics Orthot Int. 2015;39(5):361–71. Accessed Jan 6, 2021. https://doi.org/10.1177/0309364614542725.

    Article  Google Scholar 

  86. Kahle JT, Highsmith MJ, Schaepper H, Johannesson A, Orendurff MS, Kaufman K. Predicting walking ability following lower limb amputation: An updated systematic literature review. Technol Innov. 2016;18(2-3):125–37. Accessed Jan 6, 2021. https://doi.org/10.21300/18.2-3.2016.125.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Christiansen CL, Fields T, Lev G, Stephenson RO, Stevens-Lapsley JE. Functional outcomes after the prosthetic training phase of rehabilitation after dysvascular lower extremity amputation. PM R. 2015;7(11):1118–26. Accessed Jan 6, 2021. https://doi.org/10.1016/j.pmrj.2015.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Madsen UR, Bååth C, Berthelsen CB, Hommel A. A prospective study of short-term functional outcome after dysvascular major lower limb amputation. Int J Orthop Trauma Nurs. 2018;28:22–9. Accessed Jan 6, 2021. https://doi.org/10.1016/j.ijotn.2017.08.001.

    Article  PubMed  Google Scholar 

  89. Dillingham TR, Pezzin LE, Mackenzie EJ. Discharge destination after dysvascular lower-limb amputations. Arch Phys Med Rehabil. 2003;84(11):1662–8. Accessed Jan 6, 2021. https://doi.org/10.1053/s0003-9993(03)00291-0.

    Article  PubMed  Google Scholar 

  90. Dillingham TR, Pezzin LE. Rehabilitation setting and associated mortality and medical stability among persons with amputations. Arch Phys Med Rehabil. 2008;89(6):1038–45. Accessed Jan 6, 2021. https://doi.org/10.1016/j.apmr.2007.11.034.

    Article  PubMed  Google Scholar 

  91. Agrawal V, Gailey R, Gaunaurd I, Gailey R, O'Toole C. Weight distribution symmetry during the sit-to-stand movement of unilateral transtibial amputees. Ergonomics. 2011;54(7):656–64. Accessed Jan 6, 2021. https://doi.org/10.1080/00140139.2011.586060.

    Article  PubMed  Google Scholar 

  92. Agrawal V, Gailey RS, Gaunaurd IA, O'Toole C, Finnieston AA. Comparison between microprocessor-controlled ankle/foot and conventional prosthetic feet during stair negotiation in people with unilateral transtibial amputation. J Rehabil Res Dev. 2013;50(7):941–50. Accessed Jan 6, 2021. https://doi.org/10.1682/JRRD.2012.05.0093.

    Article  PubMed  Google Scholar 

  93. Gailey R, Gaunaurd I, Raya M, Kirk-Sanchez N, Prieto-Sanchez LM, Roach K. Effectiveness of an evidence-based amputee rehabilitation program: A pilot randomized controlled trial. Phys Ther. 2020;100(5):773–87. Accessed Jan 6, 2021. https://doi.org/10.1093/ptj/pzaa008.

    Article  PubMed  Google Scholar 

  94. Hafner BJ, Gaunaurd IA, Morgan SJ, Amtmann D, Salem R, Gailey RS. Construct validity of the prosthetic limb users survey of mobility (PLUS-M) in adults with lower limb amputation. Arch Phys Med Rehabil. 2017;98(2):277–85. Accessed Jan 6, 2021. https://doi.org/10.1016/j.apmr.2016.07.026.

    Article  PubMed  Google Scholar 

  95. Gailey RS, Scoville C, Gaunaurd IA, et al. Construct validity of comprehensive high-level activity mobility predictor (CHAMP) for male servicemembers with traumatic lower-limb loss. J Rehabil Res Dev. 2013;50(7):919–30. Accessed Jan 6, 2021. https://doi.org/10.1682/JRRD.2012.05.0100.

    Article  PubMed  Google Scholar 

  96. Resnik L, Borgia M. Reliability of outcome measures for people with lower-limb amputations: Distinguishing true change from statistical error. Phys Ther. 2011;91(4):555–65. Accessed Jan 6, 2021. https://doi.org/10.2522/ptj.20100287.

    Article  PubMed  Google Scholar 

  97. Muderis MA, Tetsworth K, Khemka A, et al. The osseointegration group of Australia accelerated protocol (OGAAP-1) for two-stage osseointegrated reconstruction of amputated limbs. Bone Joint J. 2016;98-B(7):952–60. Accessed Jan 6, 2021. https://doi.org/10.1302/0301-620X.98B7.37547.

    Article  PubMed  Google Scholar 

  98. Batten HR, McPhail SM, Mandrusiak AM, Varghese PN, Kuys SS. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthetics Orthot Int. 2019;43(2):196–203. Accessed Jan 6, 2021. https://doi.org/10.1177/0309364618792723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Attinger .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no financial disclosures, commercial associations, or any other conditions posing a conflict of interest to report.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, T., Kim, K.G., Kleiber, G.M., Attinger, C.E. (2023). Below Knee Amputation: Techniques to Improve Rehabilitation, Pain Management, and Function. In: Attinger, C.E., Steinberg, J.S. (eds) Functional Limb Salvage. Springer, Cham. https://doi.org/10.1007/978-3-031-27725-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27725-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27724-5

  • Online ISBN: 978-3-031-27725-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics