Skip to main content

The Role of Ceramide in Inherited Retinal Disease Pathology

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

  • 1433 Accesses

Abstract

Ceramide (Cer) plays an essential role in photoreceptor cell death in the retina. On the one hand, Cer accumulation emerges as a common feature during retina neurodegeneration, leading to the death of photoreceptors. On the other hand, Cer deficiency has also recently been associated with retinal dysfunction and degeneration. Although more and more evidence supports the importance of maintaining Cer homeostasis in the retina, mechanistic explanations of the observed phenotypes, especially in the context of Cer deficiency, are still lacking. An enhanced understanding of Cer’s role in the retina will help us explore the underlying molecular basis for clinical phenotypes of retinal dystrophies and provide us with potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RetNet. Available at: http://www.sph.uth.tmc.edu/RetNet/ Accessed 9 July 2018.

  2. Acharya JK, Dasgupta U, Rawat SS, Yuan C, Sanxaridis PD, Yonamine I, Karim P, Nagashima K, Brodsky MH, Tsunoda S. Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron. 2008;57:69–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Acharya U, Patel S, Koundakjian E, Nagashima K, Han X, Acharya JK. Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science. 2003;299:1740–3.

    CAS  PubMed  Google Scholar 

  4. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    CAS  PubMed  Google Scholar 

  5. Bainbridge JW, et al. Long-term effect of gene therapy on Leber's congenital amaurosis. N Engl J Med. 2015;372:1887–97.

    PubMed  PubMed Central  Google Scholar 

  6. Bennett J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:761–72.

    CAS  PubMed  Google Scholar 

  8. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, Hayes KC, Johnson CA, Anderson EJ, Gaudio AR, Willett WC, Schaefer EJ. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122:1297–305.

    CAS  PubMed  Google Scholar 

  9. Bertrand RE, Wang J, Xiong KH, Thangavel C, Qian X, Ba-Abbad R, Liang Q, Simões RT, Sampaio SAM, Carss KJ, Lucy Raymond F, Robson AG, Webster AR, Arno G, Porto FBO, Chen R. Ceramide synthase TLCD3B is a novel gene associated with human recessive retinal dystrophy. Genet Med. 2021;23:488–97.

    CAS  PubMed  Google Scholar 

  10. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995;82:405–14.

    CAS  PubMed  Google Scholar 

  11. Brownstein S, Meagher-Villemure K, Polomeno RC, Little JM. Optic nerve in globoid leukodystrophy (Krabbe's disease): ultrastructural changes. Arch Ophthalmol. 1978;96:864–70.

    CAS  PubMed  Google Scholar 

  12. Brüggen B, Kremser C, Bickert A, Ebel P, vom Dorp K, Schultz K, Dörmann P, Willecke K, Dedek K. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700–13.

    PubMed  Google Scholar 

  13. Chen H, Tran J-TA, Eckerd A, Huynh T-P, Elliott MH, Brush RS, Mandal NA. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration. J Lipid Res. 2013;54:1616–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen H, Tran J-TA, Brush RS, Saadi A, Rahman AK, Yu M, Yasumura D, Matthes MT, Ahern K, Yang H, LaVail MM, Mandal MNA. Ceramide signaling in retinal degeneration. Adv Exp Med Biol. 2012;723:553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett. 2001;503:7–12.

    CAS  PubMed  Google Scholar 

  16. Ebel P, Imgrund S, Vom Dorp K, Hofmann K, Maier H, Drake H, Degen J, Dörmann P, Eckhardt M, Franz T, Willecke K. Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J. 2014;461:147–58.

    CAS  PubMed  Google Scholar 

  17. Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dörmann P, Willecke K. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem. 2013;288:21433–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards TL, Jolly JK, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Black GC, Webster AR, Lotery AJ, Holder GE, Xue K, Downes SM, Simunovic MP, Seabra MC, MacLaren RE. Visual acuity after retinal gene therapy for choroideremia. N Engl J Med. 2016;374:1996–8.

    PubMed  PubMed Central  Google Scholar 

  19. German OL, Miranda GE, Abrahan CE, Rotstein NP. Ceramide is a mediator of apoptosis in retina photoreceptors. Invest Ophthalmol Vis Sci. 2006;47:1658–68.

    PubMed  Google Scholar 

  20. Ginkel C, Hartmann D, vom Dorp K, Zlomuzica A, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Rabionet M, Dere E, Dörmann P, Sandhoff K, Willecke K. Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem. 2012;287:41888–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994;269:3125–8.

    CAS  PubMed  Google Scholar 

  22. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:1855–9.

    CAS  PubMed  Google Scholar 

  23. Hannun YA, Obeid LM. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem. 2002;277:25847–50.

    CAS  PubMed  Google Scholar 

  24. Imgrund S, Hartmann D, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Gieselmann V, Sandhoff K, Willecke K. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem. 2009;284:33549–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacobson SG, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130:9–24.

    CAS  PubMed  Google Scholar 

  26. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S A. 1994;91:73–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Gröne HJ, Sandhoff R. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. 2012;21:586–608.

    CAS  PubMed  Google Scholar 

  28. Kalén A, Borchardt RA, Bell RM. Elevated ceramide levels in GH4C1 cells treated with retinoic acid. Biochim Biophys Acta. 1992;1125:90–6.

    PubMed  Google Scholar 

  29. Levy M, Futerman AH. Mammalian ceramide synthases. IUBMB Life. 2010;62:347–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lou H, Kang D, Yang Q, Lian C, Zhang C, Li Z, Tian H, Lu L, Xu GT, Xu G, Zhang J. Erythropoietin protects retina against ceramide 2-induced damage in rat. Curr Mol Med. 2017;17:699–706.

    CAS  PubMed  Google Scholar 

  31. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem. 1992;267:11144–8.

    CAS  PubMed  Google Scholar 

  33. Mizutani Y, Kihara A, Igarashi Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J. 2005;390:263–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J. 2012;441:789–802.

    CAS  PubMed  Google Scholar 

  35. Novgorodov SA, Wu BX, Gudz TI, Bielawski J, Ovchinnikova TV, Hannun YA, Obeid LM. Novel pathway of ceramide production in mitochondria: thioesterase and neutral ceramidase produce ceramide from sphingosine and acyl-CoA. J Biol Chem. 2011;286:25352–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585:114–25.

    CAS  PubMed  Google Scholar 

  37. Ranty M-L, Carpentier S, Cournot M, Rico-Lattes I, Malecaze F, Levade T, Delisle M-B, Quintyn J-C. Ceramide production associated with retinal apoptosis after retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2009;247:215.

    CAS  PubMed  Google Scholar 

  38. Robb RM, Kuwabara T. The ocular pathology of type A Niemann-Pick disease: a light and electron microscopic study. Invest Ophthalmol Vis Sci. 1973;12:366–77.

    CAS  Google Scholar 

  39. Sango K, Yamanaka S, Ajiki K, Arai N, Takano M. Involvement of retinal neurons and pigment epithelial cells in a murine model of sandhoff disease. Ophthalmic Res. 2008;40:241–8.

    PubMed  Google Scholar 

  40. Sanvicens N, Cotter TG. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem. 2006;98:1432–44.

    CAS  PubMed  Google Scholar 

  41. Seidova S-F, Kotliar K, Foerger F, Klopfer M, Lanzl I. Functional retinal changes in Gaucher disease. Doc Ophthalmol. 2009;118:151–4.

    PubMed  Google Scholar 

  42. Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, Chalfant CE, Yasumura D, Matthes MT, LaVail MM. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration [S]. J Lipid Res. 2016;57:818–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Strettoi E, Gargini C, Novelli E, Sala G, Piano I, Gasco P, Ghidoni R. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci. 2010;107:18706–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, McBride MT, Flotte TR, Humphries M, Calcedo R, Hauswirth WW, Chulay JD, Stout JT. Results at 2 years after gene therapy for RPE65-deficient Leber congenital Amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123:1606–20.

    PubMed  Google Scholar 

  45. Wiesner DA, Dawson G. Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J Neurochem. 1996;66:1418–25.

    CAS  PubMed  Google Scholar 

  46. Yamashita-Sugahara Y, Tokuzawa Y, Nakachi Y, Kanesaki-Yatsuka Y, Matsumoto M, Mizuno Y, Okazaki Y. Fam57b (family with sequence similarity 57, member B), a novel peroxisome proliferator-activated receptor γ target gene that regulates adipogenesis through ceramide synthesis. J Biol Chem. 2013;288:4522–37.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinye Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, X., Srinivasan, T., He, J., Chen, R. (2023). The Role of Ceramide in Inherited Retinal Disease Pathology. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_44

Download citation

Publish with us

Policies and ethics