Skip to main content

Classical Solution for the Compressible Flow with Free Surface in Three-Dimensional Exterior Domain

  • Chapter
  • First Online:
Fluids Under Control

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

  • 178 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation on the functional space is given at the end of this section.

  2. 2.

    It is possible to prove the exponential stability in the underlying space \(L_p(0,T;H^{2,1}_q(\Omega _L))\) for any 1 < p, q < .

References

  1. F. Boyer and P. Fabrie. Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, volume 183 of Applied Mathematical Sciences. Springer, New York, 2013.

    MATH  Google Scholar 

  2. F. Charve and R. Danchin. A global existence result for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal., 198(1):233–271, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. Q. Chen, C. Miao, and Z. Zhang. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math., 63(9):1173–1224, 2010.

    MathSciNet  MATH  Google Scholar 

  4. R. Danchin. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math., 141(3):579–614, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Danchin and J. Xu. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal., 224(1):53–90, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Denk, M. Hieber, and J. Prüss. \(\mathscr {R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788):viii+114, 2003.

    Google Scholar 

  7. Y. Enomoto and Y. Shibata. On the \(\mathscr {R}\)-sectoriality and the initial boundary value problem for the viscous compressible fluid flow. Funkcial. Ekvac., 56(3):441–505, 2013.

    Google Scholar 

  8. Y. Enomoto, L. von Below, and Y. Shibata. On some free boundary problem for a compressible barotropic viscous fluid flow. Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(1):55–89, 2014.

    MathSciNet  MATH  Google Scholar 

  9. D. Götz and Y. Shibata. On the \(\mathcal {R}\)-boundedness of the solution operators in the study of the compressible viscous fluid flow with free boundary conditions. Asymptot. Anal., 90(3–4):207–236, 2014.

    Google Scholar 

  10. B. Haspot. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal., 202(2):427–460, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. He, J. Huang, and C. Wang. Global stability of large solutions to the 3D compressible Navier-Stokes equations. Arch. Ration. Mech. Anal., 234(3):1167–1222, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Hoff and K. Zumbrun. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J., 44(2):603–676, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Huang, J. Li, and Z. Xin. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm. Pure Appl. Math., 65(4):549–585, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Kagei and T. Kobayashi. Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal., 177(2):231–330, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kawashita. On global solutions of Cauchy problems for compressible Navier-Stokes equations. Nonlinear Anal., 48(8, Ser. A: Theory Methods):1087–1105, 2002.

    Google Scholar 

  16. T. Kobayashi and Y. Shibata. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Comm. Math. Phys., 200(3):621–659, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kobayashi and Y. Shibata. Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations. Pacific J. Math., 207(1):199–234, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. C. Kunstmann and L. Weis. Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H-functional calculus. In Functional analytic methods for evolution equations, volume 1855 of Lecture Notes in Math., pages 65–311. Springer, Berlin, 2004.

    Google Scholar 

  19. H.-L. Li and T. Zhang. Large time behavior of isentropic compressible Navier-Stokes system in \(\mathbb {R}^3\). Math. Methods Appl. Sci., 34(6):670–682, 2011.

    Google Scholar 

  20. T.-P. Liu and W. Wang. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions. Comm. Math. Phys., 196(1):145–173, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55(9):337–342, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Matsumura and T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20(1):67–104, 1980.

    MathSciNet  MATH  Google Scholar 

  23. A. Matsumura and T. Nishida. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys., 89(4):445–464, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Okita. Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations. J. Differential Equations, 257(10):3850–3867, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Saito, Y. Shibata, and X. Zhang. Some free boundary problem for two-phase inhomogeneous incompressible flows. SIAM J. Math. Anal., 52(4):3397–3443, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Secchi and A. Valli. A free boundary problem for compressible viscous fluids. J. Reine Angew. Math., 341:1–31, 1983.

    MathSciNet  MATH  Google Scholar 

  27. Y. Shibata. New thought on Matsumura-Nishida theory in the lp-lq maximal regularity framework. J. Math. Fluid Mech., 24(66), (2022). https://link.springer.com/article/10.1007/s00021-022-00680-9

  28. Y. Shibata. On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow. In Recent advances in partial differential equations and applications, volume 666 of Contemp. Math., pages 341–356. Amer. Math. Soc., Providence, RI, 2016.

    Google Scholar 

  29. Y. Shibata and Y. Enomoto. Global existence of classical solutions and optimal decay rate for compressible flows via the theory of semigroups. In Handbook of mathematical analysis in mechanics of viscous fluids, pages 2085–2181. Springer, Cham, 2018.

    Google Scholar 

  30. Y. Shibata and X. Zhang. Global well-posedness of the 3D compressible Navier-Stokes equations with free surface in the maximal regularity class. Preprint, arXiv:2202.02963v1.

    Google Scholar 

  31. Y. Shibata and X. Zhang. The Lp-Lq decay estimate for the multidimensional compressible flow with free surface in the exterior domain. J. Differential Equations, 325:150–205, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. A. Solonnikov and A. Tani. Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid. In The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991), volume 1530 of Lecture Notes in Math., pages 30–55. Springer, Berlin, 1992.

    Google Scholar 

  33. A. Tani. On the free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ., 21(4):839–859, 1981.

    MathSciNet  MATH  Google Scholar 

  34. Y. Wang and Z. Tan. Global existence and optimal decay rate for the strong solutions in H2 to the compressible Navier-Stokes equations. Appl. Math. Lett., 24(11):1778–1784, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Wen and C. Zhu. Global classical large solutions to Navier-Stokes equations for viscous compressible and heat-conducting fluids with vacuum. SIAM J. Math. Anal., 45(2):431–468, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. M. Zajaczkowski. On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface. Dissertationes Math. (Rozprawy Mat.), 324:101, 1993.

    MathSciNet  MATH  Google Scholar 

  37. W. M. Zajaczkowski. On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface. SIAM J. Math. Anal., 25(1):1–84, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  38. X. Zhang. The \(\mathcal {R}\)-bounded operator families arising from the study of the barotropic compressible flows with free surface. J. Differential Equations, 269(9):7059–7105, 2020.

    Google Scholar 

Download references

Acknowledgements

Y.S. is partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (A) 17H0109; X.Z. is partially supported by NSF of China under Grant 12101457 and supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibata, Y., Zhang, X. (2023). Classical Solution for the Compressible Flow with Free Surface in Three-Dimensional Exterior Domain. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Fluids Under Control. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-27625-5_9

Download citation

Publish with us

Policies and ethics