Skip to main content

Succession and Emergence of Corals in High-Latitude (Temperate) Areas of Eastern Asia into the Future

Part of the Coral Reefs of the World book series (CORW,volume 17)

Abstract

High-latitude areas have been hypothesized as potential refugia in the future for those corals which can range-shift across the latitudes (from tropical to high or low latitudes). However, whether high latitude will be the future hope for corals either through succession (proliferation of regionally or locally endemic species) or emergence (range-shifts) needs more research. In this chapter, we argue that the future corals in high latitudes will be more due to succession than emergence. Recent data from molecular studies indicate that rather than poleward range shifts, increasing abundances of previously less abundant local coral species may be responsible for these changes, thereby hinting towards succession of species. The proliferation of rare or cryptic species (e.g., acroporid corals) adapted to the environmental features of high latitudes could form majority of the future benthos in these areas. Considering that high-latitude locations are ‘oases’ for native coral species, it is important to designate these areas for conservation to protect endemic species and lineages. Also, to better facilitate future conservation, it is necessary to conduct more research on high-latitude coral communities, particularly on those endemic species and lineages, by including eco-physiological, molecular ecological, and taxonomic (molecular and morphological) approaches to understand whether future coral communities will be dominated by the succession of these local species or the poleward range-shifting of lower latitude species or a mixture of both scenarios.

Keywords

  • Range-shift
  • Tropicalization
  • Marginalization
  • High-latitude Oases
  • Endemic species
  • Coral communities
  • Climate change

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdo DA, Bellchambers LM, Evans SN (2012) Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS One 7:e43878. https://doi.org/10.1371/journal.pone.004387

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Adjeroud M, Kayal M, Penin L (2017) Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. In: Rosssi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 549–569

    CrossRef  Google Scholar 

  • Agostini S, Harvey BP, Milazzo M, Wada S, Kon K, Floc’h N, Komatsu K, Kuroyama M, Hall-Spencer JM (2021) Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob Chang Biol 27:4771–4784

    CrossRef  CAS  PubMed  Google Scholar 

  • Baird AH, Sommer B, Madin JS (2012) Poleward range expansion of Acropora spp. along the east coast of Australia. Coral Reefs 31:1063

    CrossRef  Google Scholar 

  • Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR, Mondon JA, Bird TJ, Quinn G (2013) Geographical range, heat tolerance and invasion success in aquatic species. Proc Royal Soc B Biol Sci 280:20131958. https://doi.org/10.1098/rspb.2013.1958

    CrossRef  Google Scholar 

  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK, Holbrook NJ, Fulton EA, Slawinski D, Feng M, Edgar GJ, Radford BT, Thompson PA, Watson RA (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

    CrossRef  Google Scholar 

  • Beger M, Sommer B, Harrison PL, Smith SDA, Pandolfi JM (2014) Conserving potential coral reef refuges at high latitudes. Divers Distrib 20:245–257

    CrossRef  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2016) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56

    CrossRef  Google Scholar 

  • Beyer HL, Kennedy EV, Beger M et al (2018) Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv Lett 11. https://doi.org/10.1111/conl.12587

  • Bianchi CN, Morri C (2003) Global Sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and ecological aspects. Biogeographia 24:319–327

    Google Scholar 

  • Brown BE, Cossins AE (2011) The potential for temperature acclimatisation of reef corals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 421–434

    CrossRef  Google Scholar 

  • Caldeira K, Wickett M (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    CrossRef  CAS  PubMed  Google Scholar 

  • Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front Mar Sci 5:4. https://doi.org/10.3389/fmars.2018.00004

    CrossRef  Google Scholar 

  • Cant J, Cook K, Reimer JD, Mezaki T, Nakamura M, O’Flaherty C, Salguero-Gómez R, Beger M (2022) Transient amplification enhances the persistence of tropicalising coral populations in marginal high latitude environments. Ecography:e06156. https://doi.org/10.1111/ecog.06156

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    CrossRef  CAS  PubMed  Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    CrossRef  Google Scholar 

  • Chen CA (1999) Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zool Stud 38:119–129

    Google Scholar 

  • Chen CA, Keshavmurthy S (2009) Taiwan as a connective stepping-stone in the Kuroshio Traiangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Sci 3:15–22

    Google Scholar 

  • Cobben MMP, Verboom J, Opdam PFM, Hoekstra RF, Jochem R, Smulders MJM (2012) Wrong place, wrong time: climate change-induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species. Glob Chang Biol 18:2419–2428

    CrossRef  Google Scholar 

  • Coles SL, Jokiel PL (2018) Effects of salinity on coral reefs. In: Connell D, Hawker DW (eds) Pollution in tropical aquatic systems. CRC Press, pp 147–166

    CrossRef  Google Scholar 

  • Cook CB, Logan A, Ward J, Luckhurst B, Berg CJ Jr (1990) Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs 9:45–49

    CrossRef  Google Scholar 

  • Cook KM, Yamagiwa H, Beger M, Masucci GD, Ross S, Lee HYT, Stuart-Smith RD, Reimer JD (2022) A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecol Evol 12:e8736. https://doi.org/10.1002/ece3.8736

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Coyer JA, Ambrose RF, Engle JM, Carroll JC (1993) Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. J Exp Mar Biol Ecol 167:21–37

    CrossRef  Google Scholar 

  • Cruz ICS, Waters LG, Kikuchi RKP, Leão ZMAN, Turra A (2018) Marginal coral reefs show high susceptibility to phase shift. Mar Pollut Bull 135:551–561

    CrossRef  CAS  PubMed  Google Scholar 

  • Dalton SJ, Roff G (2013) Spatial and temporal patterns of eastern Australia subtropical coral communities. PLoS One 8:e75873. https://doi.org/10.1371/journal.pone.0075873

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • de Palmas S, Denis V, Ribas-Deulofeu L, Loubeyres M, Woo S, Hwang SJ, Song JI, Chen CA (2015) Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea. Coral Reefs 34:919–925

    CrossRef  Google Scholar 

  • Denis V, Mezaki T, Tanaka K, Kuo C-Y, Palmas SD, Keshavmurthy S, Chen CA (2013) Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan). PLoS One 8:e54330. https://doi.org/10.1371/journal.pone.0054330

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Denis V, Ribas-Deulofeu L, Loubeyres M, Palmas SD, Hwang S-J, Woo S, Song J-I, Chen CA (2014) Recruitment of the subtropical coral Alveopora japonica in the temperate waters of Jeju Island, South Korea. Bull Mar Sci 91:85–96

    CrossRef  Google Scholar 

  • Denis V, Ribas-Deulofeu L, Loubeyres M, Palmas SD, Hwang S-J, Woo S, Song J-I, Chen CA (2015) Recruitment of the subtropical coral Alveopora japonica in the temperate waters of Jeju Island, South Korea. Bull Mar Sci 91:85–96. https://doi.org/10.5343/bms.2014.1032

    CrossRef  Google Scholar 

  • Dietzel A, Bode M, Connolly SR, Hughes TP (2021) The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat Ecol Evol 5:663–669

    CrossRef  PubMed  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192

    CrossRef  Google Scholar 

  • Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM, Vilela CLS, Rosado P, Messias CSMA, Chacon MA, Santoro EP, Olmedo DB, Szpilman M, Rocha LA, Sweet M, Peixoto RS (2020) Heat waves are a major threat to turbid coral reefs in Brazil. Front Mar Sci 7:179. https://doi.org/10.3389/fmars.2020.00179

    CrossRef  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    CrossRef  CAS  PubMed  Google Scholar 

  • Emanuel K, Sundararajan R, Williams JGK (2008) Hurricanes and global warming. Results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–369

    CrossRef  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    CrossRef  CAS  PubMed  Google Scholar 

  • Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW (2021) Genetic divergence and range expansion in a western North Pacific coral. Sci Total Environ 813:152423

    CrossRef  PubMed  Google Scholar 

  • Fordyce AJ, Ainsworth TD, Heron SF, Leggat W (2019) Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes, and impact upon structural complexity. Front Mar Sci 6:498. https://doi.org/10.3389/fmars.2019.00498

    CrossRef  Google Scholar 

  • Foster K, Foster G, Al-Cibahy AS, Al-Harthi S, Purkis SJ, Riegl BM (2012) Environmental setting and temporal trends in southeastern gulf coral communities. In: Riegl BM, Purkis SJ (eds) Coral reefs of the Gulf. Springer, Dordrecht, pp 51–70. https://doi.org/10.1007/978-94-007-3008-3

    CrossRef  Google Scholar 

  • Freeman LA (2015) Robust performance of marginal Pacific coral reef habitats in future climate scenarios. PLoS One 10:e0128875–e0128816. https://doi.org/10.1371/journal.pone.0128875

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita D (2010) Current status and problems of Isoyake in Japan. Bull Fish Res Agen 32:33–42

    Google Scholar 

  • Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14:513–528

    CrossRef  Google Scholar 

  • Haraguchi H, Sekida S (2008) Recent changes in the distribution of Sargassum species in Kochi, Japan. Kuroshio Sci 2:41–46

    Google Scholar 

  • Haraguchi H, Tanaka K, Imoto Z, Hiraoka M (2009) The decline of Ecklonia cava in Kochi, Japan and the challenge in marine afforestation. Kuroshio Sci 3:49–54

    Google Scholar 

  • Hargreaves AL, Bailey SF, Laird RA (2015) Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts. J Evol Biol 28:1489–1501

    CrossRef  CAS  PubMed  Google Scholar 

  • Harii S, Omori M, Yamakawa H, Koike Y (2001) Sexual reproduction and larval settlement of the zooxanthellate coral Alveopora japonica Eguchi at high latitudes. Coral Reefs 20:19–23

    CrossRef  Google Scholar 

  • Harriott VJ, Banks SA (1995) Recruitment of scleractinian corals in the Solitary Islands marine reserve, a high latitude coral-dominated community in eastern Australia. Mar Ecol Prog Ser 123:155–161

    CrossRef  Google Scholar 

  • Harriott VJ, Harrison PL, Banks SA (1995) The coral communities of Lord Howe Island. Mar Freshw Res 46:457–446

    CrossRef  Google Scholar 

  • Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Hussein MAS, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono Taira D, Bauman AG, Todd PA (2018) Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654–681. https://doi.org/10.1016/j.marpolbul.2018.07.041

    CrossRef  CAS  PubMed  Google Scholar 

  • Higuchi T, Agostini S, Casareto BE, Suzuki Y, Yuyama I (2015) The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching. Sci Rep 5:18467. https://doi.org/10.1038/srep18467

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho MJ, Dai CF (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zool Stud 53:5. https://doi.org/10.1186/1810-522X-53-5

    CrossRef  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158. https://doi.org/10.3389/fmars.2017.00158

    CrossRef  Google Scholar 

  • Hoegh-Guldberg O, Pendleton L, Kaup A (2019) People and the changing nature of coral reefs. Reg Stud Mar Sci 30:100699

    Google Scholar 

  • Hoey A, Pratchett M, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS One 6(10):e25824. https://doi.org/10.1371/journal.pone.0025824

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoey A, Howells E, Johansen J, Hobbs J-P, Messmer V, McCowan D, Wilson S, Pratchett M (2016) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12–22

    CrossRef  Google Scholar 

  • Hong H-K, Keshavmurthy S, Kang C-K, Hwang K, Park SR, Cho S-H, Choi K-S (2015) Alveopora japonica repopulation of a bare substrate off Jeju Island, Korea. Bull Mar Sci 91:477–478

    CrossRef  Google Scholar 

  • Hughes TP, Day JC, Brodie J (2015) Securing the future of the Great Barrier Reef. Nat Clim Chang 5:508–511

    CrossRef  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017a) Coral reefs in the Anthropocene. Nature 546:82–90

    CrossRef  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    CrossRef  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018a) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    CrossRef  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018b) Global warming transforms coral reef assemblages. Nature 556:492–496

    CrossRef  CAS  PubMed  Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683. https://doi.org/10.1038/nclimate1855

    CrossRef  CAS  Google Scholar 

  • IPCC (2021) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–32. https://doi.org/10.1017/9781009157896.001

    CrossRef  Google Scholar 

  • Iwase F (2004) Shikoku Island. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 259–269

    Google Scholar 

  • Jeon BH, Yang KM, Kim JH (2015) Changes in macroalgal assemblage with sea urchin density on the east coast of South Korea. Algae 30:139–146

    Google Scholar 

  • Kang RS (2010) A review of destruction of seaweed habitats along the coast of the Korean Peninsula and its consequences. Bull Fish Res Agen 32:25–31

    Google Scholar 

  • Kang JH, Jang JE, Kim JH, Kim S, Keshavmurthy S, Agostini S, Reimer JD, Chen CA, Choi K-S, Park SR, Lee HJ (2020) The origin of the subtropical coral Alveopora japonica (Scleractinia: Acroporidae) in high-latitude environments. Front Ecol Evol 8:12. https://doi.org/10.3389/fevo.2020.00012

    CrossRef  Google Scholar 

  • Kavousi J, Denis V, Sharp V, Reimer JD, Nakamura T, Parkinson JE (2020) Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Mar Biol 167:23

    CrossRef  CAS  Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477. https://doi.org/10.1111/j.1365-2486.2011.02487.x

    CrossRef  Google Scholar 

  • Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7(6):e01373. https://doi.org/10.1002/ecs2.1373

    CrossRef  Google Scholar 

  • Keshavmurthy S, Fontana S, Mezaki T, González L d C, Chen CA (2014) Doors are closing on early development in corals facing climate change. Sci Rep 4:5633. https://doi.org/10.1038/srep05633

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavmurthy S, Beals M, Hsieh HJ, Choi K-S, Chen CA (2021) Physiological plasticity of corals to temperature stress in marginal coral communities. Sci Total Environ 758:143628

    CrossRef  CAS  PubMed  Google Scholar 

  • Keshavmurthy S, Chen T-R, Liu P-J, Wang J-T, Chen CA (2022) Learning from the past is not enough to survive present and future bleaching threshold temperatures. Sci Total Environ 852:158379

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim D (2006) A study on the restoration of marine forests using artificial reef in the barren grounds along the coast of Jeju. PhD thesis, Jeju National University, Korea

    Google Scholar 

  • Kim SW, Chung M, Park H-S (2015) Tropical fish species thriving in temperate Korean waters. Mar Biodivers 2:147–148

    CrossRef  Google Scholar 

  • Kim H, Moon B, Kim M, Kwon M (2020) Dynamic mechanisms of summer Korean heat waves simulated in a longterm unforced Community Climate System Model version 3. Atmos Sci Lett 21. https://doi.org/10.1002/asl.973

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    CrossRef  Google Scholar 

  • Kumagai NH, Molinos JG, Yamano H et al (2018) Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc Natl Acad Sci 115:201716826. https://doi.org/10.1073/pnas.1716826115

    CrossRef  CAS  Google Scholar 

  • Kuo C-Y, Keshavmurthy S, Huang Y-Y, Ho M-J, Hsieh HJ, Xiao A-T, Lo W-C, Hsin Y-C, Chen CA (2023) Transitional coral ecosystem of Taiwan in the era of changing climate. In: Takeuchi I, Yamashiro H (eds) Coral reefs of eastern Asia under anthropogenic impacts. Coral reefs of the world, vol 17, Springer Nature Switzerland AG, Cham, pp 7–34

    Google Scholar 

  • Lee STM, Keshavmurthy S, Fontana S, Takuma M, Chou W-H, Chen CA (2018) Transcriptomic response in Acropora muricata under acute temperature stress follows preconditioned seasonal temperature fluctuations. BMC Res Notes 11:119. https://doi.org/10.1186/s13104-018-3230-z

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-T, Lee H-M, Subramaniam T, Yang H-S, Park SR, Kang C-K et al (2022) Dominance of the scleractinian coral Alveopora japonica in the barren subtidal hard bottom of high-latitude Jeju Island off the south coast of Korea assessed by highresolution underwater images. PLoS One 17(11):e0275244. https://doi.org/10.1371/journal.pone.0275244

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong RC, Marzinelli EM, Low J, Bauman AG, Lim EWX, Lim CY, Steinberg PD, Guest JR (2018) Effect of coral-algal interactions on early life history processes in Pocillopora acuta in a highly disturbed coral reef system. Front Mar Sci 5:385. https://doi.org/10.3389/fmars.2018.00385

    CrossRef  Google Scholar 

  • Leriorato JC, Nakamura Y (2019) Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar Biol 166:110

    CrossRef  Google Scholar 

  • Mezaki T (2012) First record of distribution of Acropora sp. with cochleariform radial coralites from Shirigai, Otsuki, Kochi prefecture, Japan. Kuroshio Biosphere 8:23–26 + 1pl. in Japanese

    Google Scholar 

  • Mezaki T (2014) Coral migration to the high latitude area in east and North Asia. In: Kimura T, Tun K, Chou LM (eds) Status of coral reefs in east Asian seas region. JWRC, MOE Japan, pp 31–33

    Google Scholar 

  • Mezaki T, Kubota S (2012) Changes of hermatypic coral community in costal sea area of Kochi, high-latitude, Japan. Aquabiol 201(34):332–337. in Japanese

    Google Scholar 

  • Mezaki T, Keshavmurthy S, Chen CA (2014) An old and massive colony of Pavona decussata is sexually active at high latitude (32°N) in Japan. Coral Reefs 33:97

    CrossRef  Google Scholar 

  • Miller MW, Hay ME (1996) Coral-seaweed-grazer-nutrient interactions on temperate reefs. Ecol Monogr 66:323–344

    CrossRef  Google Scholar 

  • Misaki H (2017) Spawning patterns of high latitude scleractinian corals from 1989 to 2012 at Kushimoto, Wakayama, Japan. Nanki-seibutsu (in Japanese) 59:55–60

    Google Scholar 

  • Mizerek TL, Madin JS, Benzoni F, Huang D, Luiz OJ, Mera H, Schmidt-Roach S, Smith SDA, Sommer B, Baird AH (2021) No evidence for tropicalization of coral assemblages in a subtropical climate change hot spot. Coral Reefs 40:1451–1461

    CrossRef  Google Scholar 

  • Muir PR, Wallace CC, Done T, Aguirre JD (2015) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138

    CrossRef  CAS  PubMed  Google Scholar 

  • Muir PR, Obura DO, Hoeksema BW, Sheppard C, Pichon M, Richards ZT (2022) Conclusions of low extinction risk for most species of reef-building corals are premature. Nat Ecol Evol 14:1–2

    Google Scholar 

  • Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945

    CrossRef  PubMed  Google Scholar 

  • Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A, Yamano H, Nagai S, Agostini S, Teshima KM, Yasuda N (2019) The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci Rep 9:1892. https://doi.org/10.1038/s41598-018-38333-5

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Feary DA, Kanda M, Yamaoka K (2013) Tropical fishes dominate temperate reef fish communities within western Japan. PLoS One 8(12):e81107. https://doi.org/10.1371/journal.pone.0081107

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Nomura K, Hirabayashi I, Nakajima Y, Nakajima T, Mitarai S, Yokochi H (2021) Management of scleractinian coral assemblages in temperate non-reefal areas: insights from a long-term monitoring study in Kushimoto, Japan (33°N). Mar Biol 168:140

    CrossRef  CAS  Google Scholar 

  • Nojima S (2004) Kyushu. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 272–280

    Google Scholar 

  • Nomura K (2004) Kii Peninsula. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 252–256

    Google Scholar 

  • Nomura K, Mezaki T (2005) Reef building corals from Otsuki, Kochi prefecture, Japan. Kuroshio Biosphere 2:29–41 + 2pls. in Japanese

    Google Scholar 

  • Nozawa Y (2012) Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol Bull 222:192–202

    CrossRef  PubMed  Google Scholar 

  • Okano T (2013) Biodiversity in the islands of Kagoshima. In: Kawai K, Terada R, Kuwahara S (eds) The islands of Kagoshima. Kagoshima University Research Center for the Pacific Islands, pp 136–145

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    CrossRef  CAS  PubMed  Google Scholar 

  • Park J-S, Keshavmurthy S, Subramaniam T, Park S-R, Kang C-K, Choi K-S (2019) Annual gametogenesis patterns in two high-latitude corals, Alveopora japonica and Oulastrea crispata, from Jeju Island, South Korea. Estuar Coasts 43:1–10

    Google Scholar 

  • Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432

    CrossRef  Google Scholar 

  • Peteiro C (2017) Alginates and their biomedical applications. Springer Ser Biomater Sci Eng:27–66. https://doi.org/10.1007/978-981-10-6910-9_2

  • Pipithkul S, Ishizu S, Shimura A, Yokochi H, Nagai S, Fukami H, Yasuda N (2021) High clonality and geographically separated cryptic lineages in the threatened temperate coral, Acropora pruinosa. Front Mar Sci 8:668043. https://doi.org/10.3389/fmars.2021.668043

    CrossRef  Google Scholar 

  • Pontasch S (2014) Living on the edge: protective mechanisms underlying thermal tolerance in high latitude. PhD thesis, Victoria University of Wellington, New Zealand

    Google Scholar 

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314

    CrossRef  Google Scholar 

  • Reimer JD, Ono S, Sinniger F, Tsukahara J (2008) Distribution of zooxanthellate zoanthid species (Zoantharia: Anthozoa: Hexacorallia) in southern Japan limited by cold temperatures. Galaxea J Coral Reef Stud 10:57–67

    CrossRef  Google Scholar 

  • Reimer JD, Kim S, Arai S, Keshavmurthy S, Choi KS (2018) First records of zooxanthellate Zoanthus (Anthozoa: Hexacorallia: Zoantharia) from Korea and Japan (east) sea. Mar Biodivers 48:1269–1273

    CrossRef  Google Scholar 

  • Reimer JD, Fujii T, Kise H, Yanagi K, Cook K, Cant J, Koeda K, Koido T, Kitamura T, Mezaki T (2020) A Goniopora stokesi community at Tatsugasako, Otsuki, Kochi, Japan: a new northernmost specimen-based record. Plankton Benthos Res 15:185–187

    CrossRef  Google Scholar 

  • Reimer JD, Fourreau CJ, Yamagiwa H, Poliseno A (2021) First record of Nanipora (Lithotelestidae: Helioporacea: Octocorallia: Anthozoa) from the Yaeyama Islands. Fauna Ryukyuana 63:1–5

    Google Scholar 

  • Richards Z, Kirkendale L, Moore G, Hosie A, Huisman J, Bryce M, Marsh L, Bryce C, Hara A, Wilson N, Morrison S, Gomez O, Ritchie J, Whisson C, Allen M, Betterridge L, Wood C, Morrison H, Salotti M, Hansen G, Slack-Smith S, Fromont J (2016) Marine biodiversity in temperate Western Australia: multi-taxon surveys of Minden and Roe reefs. Diversity 8:7. https://doi.org/10.3390/d8020007

    CrossRef  Google Scholar 

  • Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433–446

    CrossRef  Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    CrossRef  Google Scholar 

  • Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW (2021) A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 30:1381–1397

    CrossRef  CAS  PubMed  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284. https://doi.org/10.1126/science.1067728

    CrossRef  CAS  PubMed  Google Scholar 

  • Rodriguez MV, Segumalian CS, Lalas JA, Maningas JM (2020) Octocorals outcompete scleractinian corals in a degraded reef. IOP Conf Ser Earth Environ Sci 420:012027

    CrossRef  Google Scholar 

  • Rooke AC, Burness G, Fox MG (2017) Thermal physiology of native cool-climate, and non-native warm-climate pumpkinseed sunfish raised in a common environment. J Thermal Biol 64:48–57

    CrossRef  Google Scholar 

  • Samiei JV, Saleh A, Mehdinia A, Shirvani A, Kayal M (2015) Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations. PeerJ 3:e1062. https://doi.org/10.7717/peerj.1062

    CrossRef  Google Scholar 

  • Sato A, Kuwahara H, Hashimoto O (2010) Efforts by fishers and support activities to conserve and rehabilitate seaweed beds: adaptive management of the fishery resources and habitats in Japan, vol 8, Fish for the People: Southeast Asian Fisheries Development Center, pp 25–31

    Google Scholar 

  • Schleyer MH, Floros C, Laing SCS, Macdonald AHH, Montoya-Maya PH, Morris T, Porter SN, Seré MG (2018) What can South African reefs tell us about the future of high-latitude coral systems? Mar Pollut Bull 136:491–507

    CrossRef  CAS  PubMed  Google Scholar 

  • Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5:17639. https://doi.org/10.1038/srep17639

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, Bruyn J, McCulloch MT (2019) Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat Commun 10:4031. https://doi.org/10.1038/s41467-019-12065-0

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Serisawa Y, Imoto Z, Ishikawa T, Ohno M (2004) Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70:189–191

    CrossRef  CAS  Google Scholar 

  • Shiu J-H, Keshavmurthy S, Chiang P-W, Chen H-J, Lou S-P, Tseng C-H, Hsieh HJ, Chen CA, Tang S-L (2017) Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep 7:14933. https://doi.org/10.1038/s41598-017-14927-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares M d O (2020) Marginal reef paradox: a possible refuge from environmental changes? Ocean Coast Manage 185:105063. https://doi.org/10.1016/j.ocecoaman.2019.105063

    CrossRef  Google Scholar 

  • Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–1009

    CrossRef  PubMed  Google Scholar 

  • Sommer B, Sampayo EM, Beger M, Harrison PL, Babcock RC, Pandolfi JM (2017) Local and regional controls of phylogenetic structure at the high-latitude range limits of corals. Proc R Soc B 284:20170915–20170910. https://doi.org/10.1098/rspb.2017.0915

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316

    CrossRef  Google Scholar 

  • Steneck RS, Johnson CR (2014) Kelp forests: dynamic patterns, processes, and feedbacks. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Inc., Boston, MA, pp 315–336. ISBN 9781605352282 [Research Book Chapter]

    Google Scholar 

  • Sugihara K, Yamano H, Choi K-S, Hyeong K (2014) Zooxanthellate scleractinian corals of Jeju Island, Republic of Korea. In: Nakano S, Yahara T, Nakashizuka T (eds) Integrative observations and assessments. Ecological research monographs. Springer, Tokyo, pp 111–130. https://doi.org/10.1007/978-4-431-54783-9_6

    CrossRef  Google Scholar 

  • Suzuki G, Yatsuya K, Muko S (2013) Bleaching of tabular Acropora corals during the winter season in a high-latitude community (Nagasaki, Japan). Galaxea J Coral Reef Stud 15:43–44

    CrossRef  Google Scholar 

  • Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H (2016) Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35:1419–1432

    CrossRef  Google Scholar 

  • Takao S, Yamano H, Sugihara K, Kumagai NH, Fujii M, Yamanaka Y (2015) An improved estimation of the poleward expansion of coral habitats based on the inter-annual variation of sea surface temperatures. Coral Reefs 34:1125–1137

    CrossRef  Google Scholar 

  • Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M (2012) Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol 2:2854–2865

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Terazono Y, Nakamura Y, Imoto Z, Hiraoka M (2012) Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar Ecol Prog Ser 464:209–220

    CrossRef  Google Scholar 

  • Thompson PL, MacLennan MM, Vinebrooke RD (2018) Species interactions cause non-additive effects o,f multiple environmental stressors on communities. Ecosphere 9:e02518. https://doi.org/10.1002/ecs2.2518

    CrossRef  Google Scholar 

  • Trenberth K (2005) Uncertainty in hurricanes and global warming. Science 308:1753–1754

    CrossRef  CAS  PubMed  Google Scholar 

  • True JD (2012) Salinity as a structuring force for near shore coral communities. In, Proceedings of the 12th International Coral Reef Symposium, vol 9, Cairns, Australia, p e13

    Google Scholar 

  • Tu J-Y, Chou C, Chu P-S (2009) The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-East Asian climate change. J Climate 22:3617–3628

    CrossRef  Google Scholar 

  • Tuckett CA, Wernberg T (2018) High latitude corals tolerate severe cold spell. Front Mar Sci 5:14. https://doi.org/10.3389/fmars.2018.00014

    CrossRef  Google Scholar 

  • Tuckett CA, de Bettignies T, Fromont J, Wernberg T (2017) Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves. Coral Reefs 36:947–956

    CrossRef  Google Scholar 

  • Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4:16–20

    CrossRef  CAS  PubMed  Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    CrossRef  PubMed  Google Scholar 

  • van der Zande RM, Achlatis M, Bender-Champ D, Kubicek A, Dove S, Hoegh-Guldberg O (2020) Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob Chang Biol 26:2203–2219

    CrossRef  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois R, Marzinelli EM, Mezerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846. https://doi.org/10.1098/rspb.2014.0846

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33:1000–1013. https://doi.org/10.1111/1365-2435.13310

    CrossRef  Google Scholar 

  • Veron JEN (2000) Corals of the world, vol 3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Done TJ (1979) Corals and coral communities of Lord Howe Island. Aust J Mar Freshwat Res 30:203–236

    CrossRef  Google Scholar 

  • Veron JEN, Minchin PR (1992) Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont Shelf Res 12:835–857

    CrossRef  Google Scholar 

  • Vieira C, Keshavmurthy S, Ju S-J, Hyeong K, Seo I, Kang C-K, Hong H-K, Chen CA, Choi K-S (2016) Population dynamics of a high-latitude coral Alveopora japonica Eguchi from Jeju Island, off the southern coast of Korea. Mar Freshw Res 67:594–604

    CrossRef  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    CrossRef  CAS  PubMed  Google Scholar 

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA (2011) Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. J Exp Mar Biol Ecol 400:264–271

    CrossRef  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    CrossRef  CAS  PubMed  Google Scholar 

  • Wicks LC (2009) Persistence of corals in marginal habitats: the role of the environment and symbiont diversity and ecophysiology. PhD thesis. Victoria University of Wellington, New Zealand

    Google Scholar 

  • Wicks LC, Hill R, Davy SK (2010) The influence of irradiance on tolerance to high and low temperature stress exhibited by Symbiodinium in the coral, Pocillopora damicornis, from the high-latitude reef of Lord Howe Island. Limnol Oceanogr 55:2476–2486

    CrossRef  Google Scholar 

  • Yabe H, Sugiyama T (1931) Reef-building coral fauna of Japan. Proc Imperial Acad 7:357–360

    CrossRef  Google Scholar 

  • Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20:9–12

    CrossRef  Google Scholar 

  • Yamano H, Sugihara K, Nakai T, Yamagata O (2004) Iki Islands. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 242–244

    Google Scholar 

  • Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38:4. https://doi.org/10.1029/2010GL046474

    CrossRef  Google Scholar 

  • Yamano H, Sugihara K, Watanabe T, Shimamura M, Hyeong K (2012) Coral reefs at 34°N, Japan: exploring the end of environmental gradients. Geology 40:835–838

    CrossRef  Google Scholar 

  • Yara Y, Fujii M, Yamanaka Y, Okada N, Yamano H, Oshima K (2009) Projected effects of global warming on coral reefs in seas close to Japan. Galaxea J Coral Reef Stud 11:131–140

    CrossRef  Google Scholar 

  • Yara Y, Oshima K, Fujii M, Yamano H, Yamanaka Y, Okada N (2011) Projection and uncertainty of the poleward range expansion of coral habitats in response to sea surface temperature warming: a multiple climate model study. Galaxea J Coral Reef Stud 13:11–20

    CrossRef  Google Scholar 

  • Yara Y, Vogt M, Fujii M, Yamano H, Hauri C, Steinacher M, Gruber N, Yamanaka Y (2012) Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9:4955–4968

    CrossRef  CAS  Google Scholar 

  • Yara Y, Fujii M, Yamano H, Yamanaka Y (2014) Projected coral bleaching in response to future sea surface temperature rises and the uncertainties among climate models. Hydrobiologia 733:19–29. https://doi.org/10.1007/s10750-014-1838-0

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors thank the editors of this edition of the Corals of the World series, and Profs. Takeuchi and Yamashiro for giving us an opportunity to contribute. We also thank members of the Coral Lab at the Biodiversity Research Center, Academia Sinica, Taiwan, and the Shellfish Research & Aquaculture Lab at the Department of Marine Life Science, Jeju National University, for their support. Comments from Dr. Danwei Huang on an earlier version helped improved this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keshavmurthy, S., Mezaki, T., Reimer, J.D., Choi, KS., Chen, C.A. (2023). Succession and Emergence of Corals in High-Latitude (Temperate) Areas of Eastern Asia into the Future. In: Takeuchi, I., Yamashiro, H. (eds) Coral Reefs of Eastern Asia under Anthropogenic Impacts. Coral Reefs of the World, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-27560-9_4

Download citation