Abstract
High-latitude areas have been hypothesized as potential refugia in the future for those corals which can range-shift across the latitudes (from tropical to high or low latitudes). However, whether high latitude will be the future hope for corals either through succession (proliferation of regionally or locally endemic species) or emergence (range-shifts) needs more research. In this chapter, we argue that the future corals in high latitudes will be more due to succession than emergence. Recent data from molecular studies indicate that rather than poleward range shifts, increasing abundances of previously less abundant local coral species may be responsible for these changes, thereby hinting towards succession of species. The proliferation of rare or cryptic species (e.g., acroporid corals) adapted to the environmental features of high latitudes could form majority of the future benthos in these areas. Considering that high-latitude locations are ‘oases’ for native coral species, it is important to designate these areas for conservation to protect endemic species and lineages. Also, to better facilitate future conservation, it is necessary to conduct more research on high-latitude coral communities, particularly on those endemic species and lineages, by including eco-physiological, molecular ecological, and taxonomic (molecular and morphological) approaches to understand whether future coral communities will be dominated by the succession of these local species or the poleward range-shifting of lower latitude species or a mixture of both scenarios.
Keywords
- Range-shift
- Tropicalization
- Marginalization
- High-latitude Oases
- Endemic species
- Coral communities
- Climate change
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abdo DA, Bellchambers LM, Evans SN (2012) Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS One 7:e43878. https://doi.org/10.1371/journal.pone.004387
Adjeroud M, Kayal M, Penin L (2017) Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. In: Rosssi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 549–569
Agostini S, Harvey BP, Milazzo M, Wada S, Kon K, Floc’h N, Komatsu K, Kuroyama M, Hall-Spencer JM (2021) Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob Chang Biol 27:4771–4784
Baird AH, Sommer B, Madin JS (2012) Poleward range expansion of Acropora spp. along the east coast of Australia. Coral Reefs 31:1063
Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR, Mondon JA, Bird TJ, Quinn G (2013) Geographical range, heat tolerance and invasion success in aquatic species. Proc Royal Soc B Biol Sci 280:20131958. https://doi.org/10.1098/rspb.2013.1958
Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK, Holbrook NJ, Fulton EA, Slawinski D, Feng M, Edgar GJ, Radford BT, Thompson PA, Watson RA (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38
Beger M, Sommer B, Harrison PL, Smith SDA, Pandolfi JM (2014) Conserving potential coral reef refuges at high latitudes. Divers Distrib 20:245–257
Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2016) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56
Beyer HL, Kennedy EV, Beger M et al (2018) Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv Lett 11. https://doi.org/10.1111/conl.12587
Bianchi CN, Morri C (2003) Global Sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and ecological aspects. Biogeographia 24:319–327
Brown BE, Cossins AE (2011) The potential for temperature acclimatisation of reef corals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 421–434
Caldeira K, Wickett M (2003) Anthropogenic carbon and ocean pH. Nature 425:365
Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front Mar Sci 5:4. https://doi.org/10.3389/fmars.2018.00004
Cant J, Cook K, Reimer JD, Mezaki T, Nakamura M, O’Flaherty C, Salguero-Gómez R, Beger M (2022) Transient amplification enhances the persistence of tropicalising coral populations in marginal high latitude environments. Ecography:e06156. https://doi.org/10.1111/ecog.06156
Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563
Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270
Chen CA (1999) Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zool Stud 38:119–129
Chen CA, Keshavmurthy S (2009) Taiwan as a connective stepping-stone in the Kuroshio Traiangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Sci 3:15–22
Cobben MMP, Verboom J, Opdam PFM, Hoekstra RF, Jochem R, Smulders MJM (2012) Wrong place, wrong time: climate change-induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species. Glob Chang Biol 18:2419–2428
Coles SL, Jokiel PL (2018) Effects of salinity on coral reefs. In: Connell D, Hawker DW (eds) Pollution in tropical aquatic systems. CRC Press, pp 147–166
Cook CB, Logan A, Ward J, Luckhurst B, Berg CJ Jr (1990) Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs 9:45–49
Cook KM, Yamagiwa H, Beger M, Masucci GD, Ross S, Lee HYT, Stuart-Smith RD, Reimer JD (2022) A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecol Evol 12:e8736. https://doi.org/10.1002/ece3.8736
Coyer JA, Ambrose RF, Engle JM, Carroll JC (1993) Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. J Exp Mar Biol Ecol 167:21–37
Cruz ICS, Waters LG, Kikuchi RKP, Leão ZMAN, Turra A (2018) Marginal coral reefs show high susceptibility to phase shift. Mar Pollut Bull 135:551–561
Dalton SJ, Roff G (2013) Spatial and temporal patterns of eastern Australia subtropical coral communities. PLoS One 8:e75873. https://doi.org/10.1371/journal.pone.0075873
de Palmas S, Denis V, Ribas-Deulofeu L, Loubeyres M, Woo S, Hwang SJ, Song JI, Chen CA (2015) Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea. Coral Reefs 34:919–925
Denis V, Mezaki T, Tanaka K, Kuo C-Y, Palmas SD, Keshavmurthy S, Chen CA (2013) Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan). PLoS One 8:e54330. https://doi.org/10.1371/journal.pone.0054330
Denis V, Ribas-Deulofeu L, Loubeyres M, Palmas SD, Hwang S-J, Woo S, Song J-I, Chen CA (2014) Recruitment of the subtropical coral Alveopora japonica in the temperate waters of Jeju Island, South Korea. Bull Mar Sci 91:85–96
Denis V, Ribas-Deulofeu L, Loubeyres M, Palmas SD, Hwang S-J, Woo S, Song J-I, Chen CA (2015) Recruitment of the subtropical coral Alveopora japonica in the temperate waters of Jeju Island, South Korea. Bull Mar Sci 91:85–96. https://doi.org/10.5343/bms.2014.1032
Dietzel A, Bode M, Connolly SR, Hughes TP (2021) The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat Ecol Evol 5:663–669
Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192
Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM, Vilela CLS, Rosado P, Messias CSMA, Chacon MA, Santoro EP, Olmedo DB, Szpilman M, Rocha LA, Sweet M, Peixoto RS (2020) Heat waves are a major threat to turbid coral reefs in Brazil. Front Mar Sci 7:179. https://doi.org/10.3389/fmars.2020.00179
Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688
Emanuel K, Sundararajan R, Williams JGK (2008) Hurricanes and global warming. Results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–369
Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW (2021) Genetic divergence and range expansion in a western North Pacific coral. Sci Total Environ 813:152423
Fordyce AJ, Ainsworth TD, Heron SF, Leggat W (2019) Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes, and impact upon structural complexity. Front Mar Sci 6:498. https://doi.org/10.3389/fmars.2019.00498
Foster K, Foster G, Al-Cibahy AS, Al-Harthi S, Purkis SJ, Riegl BM (2012) Environmental setting and temporal trends in southeastern gulf coral communities. In: Riegl BM, Purkis SJ (eds) Coral reefs of the Gulf. Springer, Dordrecht, pp 51–70. https://doi.org/10.1007/978-94-007-3008-3
Freeman LA (2015) Robust performance of marginal Pacific coral reef habitats in future climate scenarios. PLoS One 10:e0128875–e0128816. https://doi.org/10.1371/journal.pone.0128875
Fujita D (2010) Current status and problems of Isoyake in Japan. Bull Fish Res Agen 32:33–42
Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14:513–528
Haraguchi H, Sekida S (2008) Recent changes in the distribution of Sargassum species in Kochi, Japan. Kuroshio Sci 2:41–46
Haraguchi H, Tanaka K, Imoto Z, Hiraoka M (2009) The decline of Ecklonia cava in Kochi, Japan and the challenge in marine afforestation. Kuroshio Sci 3:49–54
Hargreaves AL, Bailey SF, Laird RA (2015) Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts. J Evol Biol 28:1489–1501
Harii S, Omori M, Yamakawa H, Koike Y (2001) Sexual reproduction and larval settlement of the zooxanthellate coral Alveopora japonica Eguchi at high latitudes. Coral Reefs 20:19–23
Harriott VJ, Banks SA (1995) Recruitment of scleractinian corals in the Solitary Islands marine reserve, a high latitude coral-dominated community in eastern Australia. Mar Ecol Prog Ser 123:155–161
Harriott VJ, Harrison PL, Banks SA (1995) The coral communities of Lord Howe Island. Mar Freshw Res 46:457–446
Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Hussein MAS, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono Taira D, Bauman AG, Todd PA (2018) Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654–681. https://doi.org/10.1016/j.marpolbul.2018.07.041
Higuchi T, Agostini S, Casareto BE, Suzuki Y, Yuyama I (2015) The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching. Sci Rep 5:18467. https://doi.org/10.1038/srep18467
Ho MJ, Dai CF (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zool Stud 53:5. https://doi.org/10.1186/1810-522X-53-5
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742
Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158. https://doi.org/10.3389/fmars.2017.00158
Hoegh-Guldberg O, Pendleton L, Kaup A (2019) People and the changing nature of coral reefs. Reg Stud Mar Sci 30:100699
Hoey A, Pratchett M, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS One 6(10):e25824. https://doi.org/10.1371/journal.pone.0025824
Hoey A, Howells E, Johansen J, Hobbs J-P, Messmer V, McCowan D, Wilson S, Pratchett M (2016) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12–22
Hong H-K, Keshavmurthy S, Kang C-K, Hwang K, Park SR, Cho S-H, Choi K-S (2015) Alveopora japonica repopulation of a bare substrate off Jeju Island, Korea. Bull Mar Sci 91:477–478
Hughes TP, Day JC, Brodie J (2015) Securing the future of the Great Barrier Reef. Nat Clim Chang 5:508–511
Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017a) Coral reefs in the Anthropocene. Nature 546:82–90
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373–377
Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018a) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83
Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018b) Global warming transforms coral reef assemblages. Nature 556:492–496
Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683. https://doi.org/10.1038/nclimate1855
IPCC (2021) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–32. https://doi.org/10.1017/9781009157896.001
Iwase F (2004) Shikoku Island. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 259–269
Jeon BH, Yang KM, Kim JH (2015) Changes in macroalgal assemblage with sea urchin density on the east coast of South Korea. Algae 30:139–146
Kang RS (2010) A review of destruction of seaweed habitats along the coast of the Korean Peninsula and its consequences. Bull Fish Res Agen 32:25–31
Kang JH, Jang JE, Kim JH, Kim S, Keshavmurthy S, Agostini S, Reimer JD, Chen CA, Choi K-S, Park SR, Lee HJ (2020) The origin of the subtropical coral Alveopora japonica (Scleractinia: Acroporidae) in high-latitude environments. Front Ecol Evol 8:12. https://doi.org/10.3389/fevo.2020.00012
Kavousi J, Denis V, Sharp V, Reimer JD, Nakamura T, Parkinson JE (2020) Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Mar Biol 167:23
Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477. https://doi.org/10.1111/j.1365-2486.2011.02487.x
Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7(6):e01373. https://doi.org/10.1002/ecs2.1373
Keshavmurthy S, Fontana S, Mezaki T, González L d C, Chen CA (2014) Doors are closing on early development in corals facing climate change. Sci Rep 4:5633. https://doi.org/10.1038/srep05633
Keshavmurthy S, Beals M, Hsieh HJ, Choi K-S, Chen CA (2021) Physiological plasticity of corals to temperature stress in marginal coral communities. Sci Total Environ 758:143628
Keshavmurthy S, Chen T-R, Liu P-J, Wang J-T, Chen CA (2022) Learning from the past is not enough to survive present and future bleaching threshold temperatures. Sci Total Environ 852:158379
Kim D (2006) A study on the restoration of marine forests using artificial reef in the barren grounds along the coast of Jeju. PhD thesis, Jeju National University, Korea
Kim SW, Chung M, Park H-S (2015) Tropical fish species thriving in temperate Korean waters. Mar Biodivers 2:147–148
Kim H, Moon B, Kim M, Kwon M (2020) Dynamic mechanisms of summer Korean heat waves simulated in a longterm unforced Community Climate System Model version 3. Atmos Sci Lett 21. https://doi.org/10.1002/asl.973
Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159
Kumagai NH, Molinos JG, Yamano H et al (2018) Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc Natl Acad Sci 115:201716826. https://doi.org/10.1073/pnas.1716826115
Kuo C-Y, Keshavmurthy S, Huang Y-Y, Ho M-J, Hsieh HJ, Xiao A-T, Lo W-C, Hsin Y-C, Chen CA (2023) Transitional coral ecosystem of Taiwan in the era of changing climate. In: Takeuchi I, Yamashiro H (eds) Coral reefs of eastern Asia under anthropogenic impacts. Coral reefs of the world, vol 17, Springer Nature Switzerland AG, Cham, pp 7–34
Lee STM, Keshavmurthy S, Fontana S, Takuma M, Chou W-H, Chen CA (2018) Transcriptomic response in Acropora muricata under acute temperature stress follows preconditioned seasonal temperature fluctuations. BMC Res Notes 11:119. https://doi.org/10.1186/s13104-018-3230-z
Lee K-T, Lee H-M, Subramaniam T, Yang H-S, Park SR, Kang C-K et al (2022) Dominance of the scleractinian coral Alveopora japonica in the barren subtidal hard bottom of high-latitude Jeju Island off the south coast of Korea assessed by highresolution underwater images. PLoS One 17(11):e0275244. https://doi.org/10.1371/journal.pone.0275244
Leong RC, Marzinelli EM, Low J, Bauman AG, Lim EWX, Lim CY, Steinberg PD, Guest JR (2018) Effect of coral-algal interactions on early life history processes in Pocillopora acuta in a highly disturbed coral reef system. Front Mar Sci 5:385. https://doi.org/10.3389/fmars.2018.00385
Leriorato JC, Nakamura Y (2019) Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar Biol 166:110
Mezaki T (2012) First record of distribution of Acropora sp. with cochleariform radial coralites from Shirigai, Otsuki, Kochi prefecture, Japan. Kuroshio Biosphere 8:23–26 + 1pl. in Japanese
Mezaki T (2014) Coral migration to the high latitude area in east and North Asia. In: Kimura T, Tun K, Chou LM (eds) Status of coral reefs in east Asian seas region. JWRC, MOE Japan, pp 31–33
Mezaki T, Kubota S (2012) Changes of hermatypic coral community in costal sea area of Kochi, high-latitude, Japan. Aquabiol 201(34):332–337. in Japanese
Mezaki T, Keshavmurthy S, Chen CA (2014) An old and massive colony of Pavona decussata is sexually active at high latitude (32°N) in Japan. Coral Reefs 33:97
Miller MW, Hay ME (1996) Coral-seaweed-grazer-nutrient interactions on temperate reefs. Ecol Monogr 66:323–344
Misaki H (2017) Spawning patterns of high latitude scleractinian corals from 1989 to 2012 at Kushimoto, Wakayama, Japan. Nanki-seibutsu (in Japanese) 59:55–60
Mizerek TL, Madin JS, Benzoni F, Huang D, Luiz OJ, Mera H, Schmidt-Roach S, Smith SDA, Sommer B, Baird AH (2021) No evidence for tropicalization of coral assemblages in a subtropical climate change hot spot. Coral Reefs 40:1451–1461
Muir PR, Wallace CC, Done T, Aguirre JD (2015) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138
Muir PR, Obura DO, Hoeksema BW, Sheppard C, Pichon M, Richards ZT (2022) Conclusions of low extinction risk for most species of reef-building corals are premature. Nat Ecol Evol 14:1–2
Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945
Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A, Yamano H, Nagai S, Agostini S, Teshima KM, Yasuda N (2019) The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci Rep 9:1892. https://doi.org/10.1038/s41598-018-38333-5
Nakamura Y, Feary DA, Kanda M, Yamaoka K (2013) Tropical fishes dominate temperate reef fish communities within western Japan. PLoS One 8(12):e81107. https://doi.org/10.1371/journal.pone.0081107
Nakamura M, Nomura K, Hirabayashi I, Nakajima Y, Nakajima T, Mitarai S, Yokochi H (2021) Management of scleractinian coral assemblages in temperate non-reefal areas: insights from a long-term monitoring study in Kushimoto, Japan (33°N). Mar Biol 168:140
Nojima S (2004) Kyushu. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 272–280
Nomura K (2004) Kii Peninsula. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 252–256
Nomura K, Mezaki T (2005) Reef building corals from Otsuki, Kochi prefecture, Japan. Kuroshio Biosphere 2:29–41 + 2pls. in Japanese
Nozawa Y (2012) Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol Bull 222:192–202
Okano T (2013) Biodiversity in the islands of Kagoshima. In: Kawai K, Terada R, Kuwahara S (eds) The islands of Kagoshima. Kagoshima University Research Center for the Pacific Islands, pp 136–145
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686
Park J-S, Keshavmurthy S, Subramaniam T, Park S-R, Kang C-K, Choi K-S (2019) Annual gametogenesis patterns in two high-latitude corals, Alveopora japonica and Oulastrea crispata, from Jeju Island, South Korea. Estuar Coasts 43:1–10
Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432
Peteiro C (2017) Alginates and their biomedical applications. Springer Ser Biomater Sci Eng:27–66. https://doi.org/10.1007/978-981-10-6910-9_2
Pipithkul S, Ishizu S, Shimura A, Yokochi H, Nagai S, Fukami H, Yasuda N (2021) High clonality and geographically separated cryptic lineages in the threatened temperate coral, Acropora pruinosa. Front Mar Sci 8:668043. https://doi.org/10.3389/fmars.2021.668043
Pontasch S (2014) Living on the edge: protective mechanisms underlying thermal tolerance in high latitude. PhD thesis, Victoria University of Wellington, New Zealand
Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314
Reimer JD, Ono S, Sinniger F, Tsukahara J (2008) Distribution of zooxanthellate zoanthid species (Zoantharia: Anthozoa: Hexacorallia) in southern Japan limited by cold temperatures. Galaxea J Coral Reef Stud 10:57–67
Reimer JD, Kim S, Arai S, Keshavmurthy S, Choi KS (2018) First records of zooxanthellate Zoanthus (Anthozoa: Hexacorallia: Zoantharia) from Korea and Japan (east) sea. Mar Biodivers 48:1269–1273
Reimer JD, Fujii T, Kise H, Yanagi K, Cook K, Cant J, Koeda K, Koido T, Kitamura T, Mezaki T (2020) A Goniopora stokesi community at Tatsugasako, Otsuki, Kochi, Japan: a new northernmost specimen-based record. Plankton Benthos Res 15:185–187
Reimer JD, Fourreau CJ, Yamagiwa H, Poliseno A (2021) First record of Nanipora (Lithotelestidae: Helioporacea: Octocorallia: Anthozoa) from the Yaeyama Islands. Fauna Ryukyuana 63:1–5
Richards Z, Kirkendale L, Moore G, Hosie A, Huisman J, Bryce M, Marsh L, Bryce C, Hara A, Wilson N, Morrison S, Gomez O, Ritchie J, Whisson C, Allen M, Betterridge L, Wood C, Morrison H, Salotti M, Hansen G, Slack-Smith S, Fromont J (2016) Marine biodiversity in temperate Western Australia: multi-taxon surveys of Minden and Roe reefs. Diversity 8:7. https://doi.org/10.3390/d8020007
Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433–446
Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW (2021) A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 30:1381–1397
Roberts CM, McClean CJ, Veron JEN et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284. https://doi.org/10.1126/science.1067728
Rodriguez MV, Segumalian CS, Lalas JA, Maningas JM (2020) Octocorals outcompete scleractinian corals in a degraded reef. IOP Conf Ser Earth Environ Sci 420:012027
Rooke AC, Burness G, Fox MG (2017) Thermal physiology of native cool-climate, and non-native warm-climate pumpkinseed sunfish raised in a common environment. J Thermal Biol 64:48–57
Samiei JV, Saleh A, Mehdinia A, Shirvani A, Kayal M (2015) Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations. PeerJ 3:e1062. https://doi.org/10.7717/peerj.1062
Sato A, Kuwahara H, Hashimoto O (2010) Efforts by fishers and support activities to conserve and rehabilitate seaweed beds: adaptive management of the fishery resources and habitats in Japan, vol 8, Fish for the People: Southeast Asian Fisheries Development Center, pp 25–31
Schleyer MH, Floros C, Laing SCS, Macdonald AHH, Montoya-Maya PH, Morris T, Porter SN, Seré MG (2018) What can South African reefs tell us about the future of high-latitude coral systems? Mar Pollut Bull 136:491–507
Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5:17639. https://doi.org/10.1038/srep17639
Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, Bruyn J, McCulloch MT (2019) Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat Commun 10:4031. https://doi.org/10.1038/s41467-019-12065-0
Serisawa Y, Imoto Z, Ishikawa T, Ohno M (2004) Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70:189–191
Shiu J-H, Keshavmurthy S, Chiang P-W, Chen H-J, Lou S-P, Tseng C-H, Hsieh HJ, Chen CA, Tang S-L (2017) Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep 7:14933. https://doi.org/10.1038/s41598-017-14927-3
Soares M d O (2020) Marginal reef paradox: a possible refuge from environmental changes? Ocean Coast Manage 185:105063. https://doi.org/10.1016/j.ocecoaman.2019.105063
Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–1009
Sommer B, Sampayo EM, Beger M, Harrison PL, Babcock RC, Pandolfi JM (2017) Local and regional controls of phylogenetic structure at the high-latitude range limits of corals. Proc R Soc B 284:20170915–20170910. https://doi.org/10.1098/rspb.2017.0915
Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316
Steneck RS, Johnson CR (2014) Kelp forests: dynamic patterns, processes, and feedbacks. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Inc., Boston, MA, pp 315–336. ISBN 9781605352282 [Research Book Chapter]
Sugihara K, Yamano H, Choi K-S, Hyeong K (2014) Zooxanthellate scleractinian corals of Jeju Island, Republic of Korea. In: Nakano S, Yahara T, Nakashizuka T (eds) Integrative observations and assessments. Ecological research monographs. Springer, Tokyo, pp 111–130. https://doi.org/10.1007/978-4-431-54783-9_6
Suzuki G, Yatsuya K, Muko S (2013) Bleaching of tabular Acropora corals during the winter season in a high-latitude community (Nagasaki, Japan). Galaxea J Coral Reef Stud 15:43–44
Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H (2016) Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35:1419–1432
Takao S, Yamano H, Sugihara K, Kumagai NH, Fujii M, Yamanaka Y (2015) An improved estimation of the poleward expansion of coral habitats based on the inter-annual variation of sea surface temperatures. Coral Reefs 34:1125–1137
Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M (2012) Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol 2:2854–2865
Terazono Y, Nakamura Y, Imoto Z, Hiraoka M (2012) Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar Ecol Prog Ser 464:209–220
Thompson PL, MacLennan MM, Vinebrooke RD (2018) Species interactions cause non-additive effects o,f multiple environmental stressors on communities. Ecosphere 9:e02518. https://doi.org/10.1002/ecs2.2518
Trenberth K (2005) Uncertainty in hurricanes and global warming. Science 308:1753–1754
True JD (2012) Salinity as a structuring force for near shore coral communities. In, Proceedings of the 12th International Coral Reef Symposium, vol 9, Cairns, Australia, p e13
Tu J-Y, Chou C, Chu P-S (2009) The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-East Asian climate change. J Climate 22:3617–3628
Tuckett CA, Wernberg T (2018) High latitude corals tolerate severe cold spell. Front Mar Sci 5:14. https://doi.org/10.3389/fmars.2018.00014
Tuckett CA, de Bettignies T, Fromont J, Wernberg T (2017) Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves. Coral Reefs 36:947–956
Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4:16–20
Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364
van der Zande RM, Achlatis M, Bender-Champ D, Kubicek A, Dove S, Hoegh-Guldberg O (2020) Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob Chang Biol 26:2203–2219
Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois R, Marzinelli EM, Mezerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846. https://doi.org/10.1098/rspb.2014.0846
Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33:1000–1013. https://doi.org/10.1111/1365-2435.13310
Veron JEN (2000) Corals of the world, vol 3. Australian Institute of Marine Science, Townsville
Veron JEN, Done TJ (1979) Corals and coral communities of Lord Howe Island. Aust J Mar Freshwat Res 30:203–236
Veron JEN, Minchin PR (1992) Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont Shelf Res 12:835–857
Vieira C, Keshavmurthy S, Ju S-J, Hyeong K, Seo I, Kang C-K, Hong H-K, Chen CA, Choi K-S (2016) Population dynamics of a high-latitude coral Alveopora japonica Eguchi from Jeju Island, off the southern coast of Korea. Mar Freshw Res 67:594–604
Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846
Wernberg T, Thomsen MS, Tuya F, Kendrick GA (2011) Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. J Exp Mar Biol Ecol 400:264–271
Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172
Wicks LC (2009) Persistence of corals in marginal habitats: the role of the environment and symbiont diversity and ecophysiology. PhD thesis. Victoria University of Wellington, New Zealand
Wicks LC, Hill R, Davy SK (2010) The influence of irradiance on tolerance to high and low temperature stress exhibited by Symbiodinium in the coral, Pocillopora damicornis, from the high-latitude reef of Lord Howe Island. Limnol Oceanogr 55:2476–2486
Yabe H, Sugiyama T (1931) Reef-building coral fauna of Japan. Proc Imperial Acad 7:357–360
Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20:9–12
Yamano H, Sugihara K, Nakai T, Yamagata O (2004) Iki Islands. In: Ministry of the Environment and Japanese Coral Reef Society (ed) Coral reefs of Japan. Ministry of the Environment, Tokyo, pp 242–244
Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38:4. https://doi.org/10.1029/2010GL046474
Yamano H, Sugihara K, Watanabe T, Shimamura M, Hyeong K (2012) Coral reefs at 34°N, Japan: exploring the end of environmental gradients. Geology 40:835–838
Yara Y, Fujii M, Yamanaka Y, Okada N, Yamano H, Oshima K (2009) Projected effects of global warming on coral reefs in seas close to Japan. Galaxea J Coral Reef Stud 11:131–140
Yara Y, Oshima K, Fujii M, Yamano H, Yamanaka Y, Okada N (2011) Projection and uncertainty of the poleward range expansion of coral habitats in response to sea surface temperature warming: a multiple climate model study. Galaxea J Coral Reef Stud 13:11–20
Yara Y, Vogt M, Fujii M, Yamano H, Hauri C, Steinacher M, Gruber N, Yamanaka Y (2012) Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9:4955–4968
Yara Y, Fujii M, Yamano H, Yamanaka Y (2014) Projected coral bleaching in response to future sea surface temperature rises and the uncertainties among climate models. Hydrobiologia 733:19–29. https://doi.org/10.1007/s10750-014-1838-0
Acknowledgements
The authors thank the editors of this edition of the Corals of the World series, and Profs. Takeuchi and Yamashiro for giving us an opportunity to contribute. We also thank members of the Coral Lab at the Biodiversity Research Center, Academia Sinica, Taiwan, and the Shellfish Research & Aquaculture Lab at the Department of Marine Life Science, Jeju National University, for their support. Comments from Dr. Danwei Huang on an earlier version helped improved this work.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Keshavmurthy, S., Mezaki, T., Reimer, J.D., Choi, KS., Chen, C.A. (2023). Succession and Emergence of Corals in High-Latitude (Temperate) Areas of Eastern Asia into the Future. In: Takeuchi, I., Yamashiro, H. (eds) Coral Reefs of Eastern Asia under Anthropogenic Impacts. Coral Reefs of the World, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-27560-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-27560-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27559-3
Online ISBN: 978-3-031-27560-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)