Skip to main content

Luenberger Observer Design for Robust Estimation of Battery State of Charge with Application to Lithium-Titanate Oxide Cells

  • Conference paper
  • First Online:
Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis (ACD 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 467))

Included in the following conference series:

  • 181 Accesses

Abstract

The State of Charge (SoC) of a lithium-ion battery cannot be measured directly, and its estimation is one of the main challenges in electrification of transport, among others. In this article, we introduce a systematic methodology for designing Luenberger observers for on-line SoC estimation, based on a given second-order Equivalent Circuit Model (ECM) for the battery. We show how the proposed methodology can be augmented with the Linear Quadratic Regulator (LQR) optimal control framework, resulting in a computationally lightweight state estimator that also displays time optimal convergence. An application to Lithium-Titanate Oxide (LTO) battery cells is presented to illustrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Z., Huai, R., Xiao, L.: State-of-charge estimation for lithium-ion batteries using a kalman filter based on local linearization. Energies 8(8), 7854–7873 (2015)

    Article  Google Scholar 

  2. How, D.N., Hannan, M.H. Lipu, Ker, P.J.: State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review. IEEE Access 7, 136 116–136 136 (2019)

    Google Scholar 

  3. Gyenes, B., Stevens, D., Chevrier, V., Dahn, J.: Understanding anomalous behavior in coulombic efficiency measurements on li-ion batteries. J. Electrochem. Soc. 162(3), A278 (2014)

    Article  Google Scholar 

  4. Rabah, M., Immonen, E., Shahsavari, S., Haghbayan, M.-H., Murashko, K., Immonen, P.: Capacity loss estimation for li-ion batteries based on a semi-empirical model. Anwendungen und Konzepte der Wirtschaftsinformatik, no. 14 (2021)

    Google Scholar 

  5. Immonen, E., Hurri, J.: Incremental thermo-electric CFD modeling of a high-energy lithium-titanate oxide battery cell in different temperatures: a comparative study. Appl. Thermal Eng. 197, 117260 (2021)

    Article  Google Scholar 

  6. Zhou, W., Zheng, Y., Pan, Z., Lu, Q.: Review on the battery model and SOC estimation method. Processes 9(9), 1685 (2021)

    Article  Google Scholar 

  7. Ali, M.U., Zafar, A., Nengroo, S.H., Hussain, S., Junaid Alvi, M., Kim, H.-J.: Towards a smarter battery management system for electric vehicle applications: a critical review of lithium-ion battery state of charge estimation. Energies 12(3), 446 (2019)

    Google Scholar 

  8. Shrivastava, P., Soon, T.K., Idris, M.Y.I.B., Mekhilef, S.: Overview of model-based online state-of-charge estimation using kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 113, 109233 (2019)

    Article  Google Scholar 

  9. Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., Chen, Z.: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 131, 110015 (2020)

    Article  Google Scholar 

  10. Vidal, C., Malysz, P., Kollmeyer, P., Emadi, A.: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. IEEE Access 8, 52 796–52 814 (2020)

    Google Scholar 

  11. Lievre, A., Pelissier, S., Sari, A., Venet, P., Hijazi, A.: Luenberger observer for soc determination of lithium-ion cells in mild hybrid vehicles, compared to a kalman filter. In: 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1–7. IEEE (2015)

    Google Scholar 

  12. Meng, J., Ricco, M., Luo, G., Swierczynski, M., Stroe, D.-I., Stroe, A.-I., Teodorescu, R.: An overview of online implementable SOC estimation methods for lithium-ion batteries. In: 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP), pp. 573–580. IEEE (2017)

    Google Scholar 

  13. Rahimi-Eichi, H., Chow, M.-Y.: Adaptive parameter identification and state-of-charge estimation of lithium-ion batteries. In: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 4012–4017. IEEE (2012)

    Google Scholar 

  14. Tang, X., Liu, B., Gao, F., Lv, Z.: State-of-charge estimation for li-ion power batteries based on a tuning free observer. Energies 9(9) (2016). https://www.mdpi.com/1996-1073/9/9/675

  15. Manthopoulos, A., Wang, X.: A review and comparison of lithium-ion battery SOC estimation methods for electric vehicles. In: IECON: The 46th Annual Conference of the IEEE Industrial Electronics Society, vol. 2020, pp. 2385–2392. IEEE (2020)

    Google Scholar 

  16. Turku university of applied sciences e-rallycross car project. https://erallycross.turkuamk.fi/en/main-page/. Accessed 10 Jan. 2022

  17. Immonen, E., Hurri, J.: Equivalent circuit modeling of a high-energy lto battery cell for an electric rallycross car. In: IEEE 30th International Symposium on Industrial Electronics (ISIE), vol. 2021, pp. 1–5. IEEE (2021)

    Google Scholar 

  18. Ferrante, A., Lepschy, A., Viaro, U.: A simple proof of the routh test. IEEE Trans. Autom. Control 44(6), 1306–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rotella, F., Zambettakis, I.: On functional observers for linear time-varying systems. IEEE Trans. Autom. Control 58(5), 1354–1360 (2012)

    Article  MATH  Google Scholar 

  20. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, vol. 6. Springer Science & Business Media (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Immonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Immonen, E. (2023). Luenberger Observer Design for Robust Estimation of Battery State of Charge with Application to Lithium-Titanate Oxide Cells. In: Theilliol, D., Korbicz, J., Kacprzyk, J. (eds) Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis. ACD 2022. Studies in Systems, Decision and Control, vol 467. Springer, Cham. https://doi.org/10.1007/978-3-031-27540-1_3

Download citation

Publish with us

Policies and ethics