Skip to main content

A Decision Diagram Operation for Reachability

  • Conference paper
  • First Online:
Formal Methods (FM 2023)

Abstract

Saturation is considered the state-of-the-art method for computing fixpoints with decision diagrams. We present a relatively simple decision diagram operation called Reach that also computes fixpoints. In contrast to saturation, it does not require a partitioning of the transition relation. We give sequential algorithms implementing the new operation for both binary and multi-valued decision diagrams, and moreover provide parallel counterparts. We implement these algorithms and experimentally compare their performance against saturation on 692 model checking benchmarks in different languages. The results show that the Reach operation often outperforms saturation, especially on transition relations with low locality. In a comparison between parallelized versions of Reach and saturation we find that Reach obtains comparable speedups up to 16 cores, although falls behind saturation at 64 cores. Finally, in a comparison with the state-of-the-art model checking tool ITS-tools we find that Reach outperforms ITS-tools on 29% of models, suggesting that Reach can be useful as a complementary method in an ensemble tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The implementation of our algorithms, along with the repeatable experiments can be found here: https://github.com/sebastiaanbrand/reachability.

References

  1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via common function structure. In: ICCAD 2001, pp. 443–448. IEEE (2001)

    Google Scholar 

  2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: ACM VLSI, pp. 116–119 (2003)

    Google Scholar 

  3. Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complexity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell. Tools 23(04), 1460015 (2014)

    Article  Google Scholar 

  4. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of decision diagrams for systems with structural units. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_13

    Chapter  MATH  Google Scholar 

  5. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision diagrams for Petri nets: a comparison of variable ordering algorithms. In: Koutny, M., Kristensen, L.M., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XIII. LNCS, vol. 11090, pp. 73–92. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58381-4_4

    Chapter  Google Scholar 

  6. Bahar, R.I., et al.: Algebric decision diagrams and their applications. FMSD 10(2), 171–206 (1997)

    Google Scholar 

  7. van der Berg, F., Laarman, A.: SpinS: extending LTSmin with Promela through SpinJa. ENTCS 296, 95–105 (2013)

    Google Scholar 

  8. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. ENTCS 66(2), 160–177 (2002)

    Google Scholar 

  9. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85762-4_6

    Chapter  Google Scholar 

  10. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. Trans. Comput. 45(9), 993–1002 (1996)

    Article  MATH  Google Scholar 

  11. Brand, S., Bäck, T., Laarman, A.: A decision diagram operation for reachability. arXiv preprint arXiv:2212.03684 (2022)

  12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Trans. Comput. 100(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  13. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22

    Chapter  Google Scholar 

  15. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_31

    Chapter  MATH  Google Scholar 

  16. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_23

    Chapter  MATH  Google Scholar 

  17. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_27

    Chapter  Google Scholar 

  18. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_37

    Chapter  Google Scholar 

  19. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg (2005). https://doi.org/10.1007/11562436_32

    Chapter  Google Scholar 

  20. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: IJCAI (2011)

    Google Scholar 

  21. van Dijk, T., Laarman, A., van de Pol, J.: Multi-core BDD operations for symbolic reachability. ENTCS 296, 127–143 (2013)

    Google Scholar 

  22. van Dijk, T., Meijer, J., van de Pol, J.: Multi-core on-the-fly saturation. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 58–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_4

    Chapter  Google Scholar 

  23. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_60

    Chapter  Google Scholar 

  24. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams. STTT 19(6), 675–696 (2017)

    Article  Google Scholar 

  25. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary BDDs. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 233–247. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0_16

    Chapter  Google Scholar 

  26. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)

    Article  Google Scholar 

  27. Kam, T.: Multi-valued decision diagrams: theory and applications. Multiple-Valued Logic 4(1), 9–62 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Chapter  Google Scholar 

  29. Knuth, D.E.: The Art of Computer Programming, vol. 4A: Combinatorial Algorithms, Part 1. Pearson Education India (2011)

    Google Scholar 

  30. Kordon, F., et al.: Complete Results for the 2021 Edition of the Model Checking Contest (2021). http://mcc.lip6.fr/2021/results.php

  31. Kordon, F., et al.: Complete results for the 2016 edition of the model checking contest (2016). https://mcc.lip6.fr/2016/results.php

  32. Matsunaga, Y., McGeer, P.C., Brayton, R.K.: On computing the transitive closure of a state transition relation. In: International Design Automation Conference, pp. 260–265 (1993)

    Google Scholar 

  33. McMillan, K.L.: Symbolic model checking: an approach to the state explosion problem. Ph.D. thesis, Carnegie Mellon University (1992)

    Google Scholar 

  34. Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction for static variable ordering in symbolic reachability analysis. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 255–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_20

    Chapter  Google Scholar 

  35. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6_17

    Chapter  Google Scholar 

  36. Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-based model checking of Petri nets. In: De Michelis, G., Diaz, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 374–391. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60029-9_50

    Chapter  MATH  Google Scholar 

  37. Sanner, S., McAllester, D.: Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference. In: IJCAI, pp. 1384–1390 (2005)

    Google Scholar 

  38. Somenzi, F.: Binary decision diagrams. Nato ASI Subseries F CSS 173, 303–368 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  40. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_20

    Chapter  Google Scholar 

  41. Vinkhuijzen, L., Laarman, A.: Symbolic model checking with sentential decision diagrams. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 124–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2_8

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the NEASQC project, funded by European Union’s Horizon 2020, Grant Agreement No. 951821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brand, S., Bäck, T., Laarman, A. (2023). A Decision Diagram Operation for Reachability. In: Chechik, M., Katoen, JP., Leucker, M. (eds) Formal Methods. FM 2023. Lecture Notes in Computer Science, vol 14000. Springer, Cham. https://doi.org/10.1007/978-3-031-27481-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27481-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27480-0

  • Online ISBN: 978-3-031-27481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics