Skip to main content

Towards Tumour Graph Learning for Survival Prediction in Head & Neck Cancer Patients

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Abstract

With nearly one million new cases diagnosed worldwide in 2020, head & neck cancer is a deadly and common malignity. There are challenges to decision making and treatment of such cancer, due to lesions in multiple locations and outcome variability between patients. Therefore, automated segmentation and prognosis estimation approaches can help ensure each patient gets the most effective treatment. This paper presents a framework to perform these functions on arbitrary field of view (FoV) PET and CT registered scans, thus approaching tasks 1 and 2 of the HECKTOR 2022 challenge as team VokCow. The method consists of three stages: localization, segmentation and survival prediction. First, the scans with arbitrary FoV are cropped to the head and neck region and a u-shaped convolutional neural network (CNN) is trained to segment the region of interest. Then, using the obtained regions, another CNN is combined with a support vector machine classifier to obtain the semantic segmentation of the tumours, which results in an aggregated Dice score of 0.57 in task 1. Finally, survival prediction is approached with an ensemble of Weibull accelerated failure times model and deep learning methods. In addition to patient health record data, we explore whether processing graphs of image patches centred at the tumours via graph convolutions can improve the prognostic predictions. A concordance index of 0.64 was achieved in the test set, ranking 6th in the challenge leaderboard for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  2. Johnson, D.E., Burtness, B., Leemans, C.R., et al.: Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers. 6, 92 (2020)

    Article  Google Scholar 

  3. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_1

    Chapter  Google Scholar 

  4. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

  5. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98253-9_1

    Chapter  Google Scholar 

  6. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2022: automatic head and neck tumor segmentation and outcome prediction in PET/CT. In: Andrearczyk, V., et al. (eds.) HECKTOR 2022. LNCS, vol. 13626, pp. 1–30. Springer, Cham (2023)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Isensee, F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_4

    Chapter  Google Scholar 

  10. Xie, J., Peng, Y.: The head and neck tumor segmentation based on 3D U-Net. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 92–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_8

    Chapter  Google Scholar 

  11. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021)

  12. Van der Walt, S., et al.: scikit-image: image processing in Python. PeerJ 2(e453), e453 (2014)

    Article  Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley, New York (1980)

    MATH  Google Scholar 

  15. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972). https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, C.-N., et al.: Learning patient-specific cancer survival distributions as a sequence of dependent regressors. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  17. Jin, P.: Using survival prediction techniques to learn consumer-specific reservation price distributions. University of Alberta, Edmonton, AB (2015)

    Google Scholar 

  18. Fotso, S., et al.: Deep neural networks for survival analysis based on a multi-task framework. arXiv:1801.05512

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR, June 2015

    Google Scholar 

  20. Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE (2016)

    Google Scholar 

  21. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  22. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE ICCV (2017)

    Google Scholar 

  23. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  24. Davidson-Pilon, C., et al.: Lifelines: survival analysis in Python. J. Open Source Softw. 4(40), 1317 (2019). https://doi.org/10.21105/joss.01317

    Article  Google Scholar 

  25. Saeed, N., Al Majzoub, R., Sobirov, I., Yaqub, M.: An ensemble approach for patient prognosis of head and neck tumor using multimodal data. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 278–286. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_26

    Chapter  Google Scholar 

  26. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. CoRR abs/1907.10902 (2019)

    Google Scholar 

  27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  28. Falcon, W., et al.: PyTorch lightning (2019). https://doi.org/10.5281/zenodo.3828935

  29. Fey, M., et al.: Fast graph representation learning with PyTorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  30. Fatima, S.S., et al.: A linear approximation method for the Shapley value. Artif. Intell. 172(14), 1673–1699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ancona, M., et al.: Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In: ICML, pp. 272–281. PMLR, May 2019

    Google Scholar 

  32. Hayakawa, J., et al.: Pathway importance by graph convolutional network and Shapley additive explanations in gene expression phenotype of diffuse large B-cell lymphoma. PLoS ONE 17(6), e0269570 (2022)

    Article  Google Scholar 

  33. Bhattacharjee, S., et al.: An explainable computer vision in histopathology: techniques for interpreting black box model. In: International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Víctor Juanco-Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juanco-Müller, Á.V., Mota, J.F.C., Goatman, K., Hoogendoorn, C. (2023). Towards Tumour Graph Learning for Survival Prediction in Head & Neck Cancer Patients. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics