Skip to main content

Thermal Properties

  • Chapter
  • First Online:
Food Physics

Abstract

Most food processing operations used to prolong the shelf life of foods involve heating foods to temperatures capable of inactivating microbial and enzymatic activity. This chapter provides an understanding of thermal behavior in foods. Basic concepts of thermodynamics, such as enthalpy, heat capacity and higher order phase transitions are explained. Different heat transfer mechanisms and geometries are presented step by step and illustrated with examples. The caloric value of food, its influencing variables and measurement are described. When discussing the methods of thermal analysis, Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG) are considered in detail. At the end of the chapter, numerous application examples are listed, which can be used for further study of methods for conducting thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BIPM (2018) On the revision of the International System of Units (SI). Bureau International de Poids et Mesures, Versailles

    Google Scholar 

  2. Schmiermund T (2020) Die Avogadro-Konstante. Springer Nature, Wiesbaden. https://doi.org/10.1007/978-3-658-29279-9

    Book  Google Scholar 

  3. Kurzweil P (2013) Das Vieweg Einheiten-Lexikon : Begriffe, Formeln und Konstanten aus Naturwissenschaften, Technik und Medizin. Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-322-92920-4

    Book  Google Scholar 

  4. LMIV (2011) Lebensmittelinformationsverordnung Regulation No 1169/2011 of the European Parliament. Brussels. http://data.europa.eu/eli/reg/2011/1169/oj

  5. Kohlrausch F (1996) Praktische Physik Bd.3. Teubner, Stuttgart. https://doi.org/10.1002/piuz.19870180109

    Book  Google Scholar 

  6. Tscheuschner HD (2016) Grundzüge der Lebensmitteltechnik. Behrs, Hamburg

    Google Scholar 

  7. Roos Y (2010) Glass Transition Temperature and Its Relevance in Food Processing. Annu Rev Food Sci Technol 1:469. https://doi.org/10.1146/annurev.food.102308.124139

    Article  CAS  PubMed  Google Scholar 

  8. Abiad MG, Carvajal MT, Campanella OH (2009) A review on methods and theories to describe the glass transition phenomenon: applications in food and pharmaceutical products. Food Eng Rev 1(2):105. https://doi.org/10.1007/s12393-009-9009-1

    Article  Google Scholar 

  9. Kurzhals H-A (2003) Lexikon Lebensmitteltechnik. Behr’s Verlag, Hamburg

    Google Scholar 

  10. Davies GF, Man CMD, Andrews SD, Paurine A, Hutchins MG, Maidment GG (2012) Potential life cycle carbon savings with low emissivity packaging for refrigerated food on display. J Food Eng 109(2):202. https://doi.org/10.1016/j.jfoodeng.2011.10.018

    Article  Google Scholar 

  11. Fellows PJ (2009) Food processing technology – principles and practice. Woodhead Publishing, Sawston Cambridge

    Google Scholar 

  12. Singh RP, Heldman DR (2014) Introduction to food engineering. Academic Press, San Diego. https://doi.org/10.1016/C2011-0-06101-X

    Book  Google Scholar 

  13. VDI (2019) Wärmeatlas. Verein Deutscher Ingenieure, Düsseldorf. https://doi.org/10.1007/978-3-662-52989-8

    Book  Google Scholar 

  14. Toledo RT (2007) Fundamentals of food process engineering. Springer, Berlin

    Google Scholar 

  15. Singh RP, Heldman DR (2009) Introduction to food engineering. Academic Press/Elsevier, San Diego

    Google Scholar 

  16. Kessler HG (2002) Food and bio process engineering: dairy technology. A. Kessler, München

    Google Scholar 

  17. EN 673 (2011) Glas im Bauwesen - Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) - Berechnungsverfahren. Beuth, Berlin. https://doi.org/10.31030/3123472

    Book  Google Scholar 

  18. EN 675 (2011) Glas im Bauwesen - Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) - Wärmestrommesser-Verfahren. Beuth, Berlin. https://doi.org/10.31030/3123472

    Book  Google Scholar 

  19. EN ISO 6946 (2017) Bauteile - Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient - Berechnungsverfahren. Beuth, Berlin. https://doi.org/10.31030/3123472

    Book  Google Scholar 

  20. DBU (2020) Heizen mit Eis. Deutsche Bundesstiftung Umwelt. https://www.dbu.de/123ibook62425_28975_.html. Accessed 9 Jan 2021

  21. Wang J, Battaglia F, Wang S, Zhang T, Ma Z (2019) Flow and heat transfer characteristics of ice slurry in typical components of cooling systems: a review. Int J Heat Mass Transfer 141:922. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.021

    Article  Google Scholar 

  22. Grigull U (1989) Zustandsgrößen von Wasser und Wasserdampf in SI-Einheiten. 0-800 Grad Celsius+ 0-1000 bar. Springer, Berlin

    Google Scholar 

  23. Tschubik IA, Maslow AM (1973) Wärmephysikalische Konstanten von Lebensmitteln und Halbfabrikaten. VEB Fachbuchverlag, Leipzig

    Google Scholar 

  24. Hayes (1987) Food engineering data handbook. Wiley, New York, NY

    Google Scholar 

  25. Rao MA, Rizvi SSH, Datta AK (2005) Engineering properties of foods. Taylor & Francis, Boca Raton

    Google Scholar 

  26. Rahman S (2009) Food properties handbook. CRC Press, Boca Raton. https://doi.org/10.1201/9781420003093

    Book  Google Scholar 

  27. Kohlrausch F (1996) Praktische Physik Bd.1. Teubner, Stuttgart. https://doi.org/10.1007/978-3-322-87205-0

    Book  Google Scholar 

  28. DIN EN ISO 22007 (2012) Kunststoffe - Bestimmung der Wärmeleitfähigkeit und der Temperaturleitfähigkeit - Teil 4: Laserblitzverfahren. Beuth, Berlin. https://doi.org/10.31030/3123472

    Book  Google Scholar 

  29. Hammerschmidt U, Meier V (2006) New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. Int J Thermophys 27(3):840. https://doi.org/10.1007/s10765-006-0061-2

    Article  CAS  Google Scholar 

  30. Schmidt RF, Lang F, Heckmann M (2011) Physiologie des Menschen. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-01651-6

    Book  Google Scholar 

  31. Herman IP (2016) Physics of the human body. Springer, New York. https://doi.org/10.1007/978-3-319-23932-3

    Book  Google Scholar 

  32. Benedek GB, Villars FMH (2000) Physics with illustrative examples from medicine and biology. Springer, New York, NY

    Book  Google Scholar 

  33. FAO (2001) Human energy requirements – Report of a Joint FAO/WHO/UNU Expert Consultation. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  34. James WPT, Schofield EC (1990) Human energy requirements. A manual for planners and nutritionists. FAO, Food and Agriculture Organization of the United Nations, New York, NY

    Google Scholar 

  35. Vaz M, Karaolis N, Draper A, Shetty P (2007) A compilation of energy costs of physical activities. Public Health Nutr 8(7a):1153. https://doi.org/10.1079/PHN2005802

    Article  Google Scholar 

  36. Lexikon der Ernährung (2001) Spektrum Akademischer Verlag. https://www.spektrum.de/lexikon/ernaehrung/

  37. Souci SW, Fachmann W, Kraut H (2016) Die Zusammensetzung der Lebensmittel, Nährwert-Tabellen. Wissenschaftliche Verlagsgesellschaft (WVG), Stuttgart

    Google Scholar 

  38. Novotny JA, Gebauer SK, Baer DJ (2012) Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am J Clin Nutr 96(2):296. https://doi.org/10.3945/ajcn.112.035782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DIN 51005 (2019) Thermische Analyse (TA) - Begriffe; Text Deutsch und Englisch. Beuth, Berlin. https://doi.org/10.31030/3045657

    Book  Google Scholar 

  40. DIN EN ISO (2004) Futtermittel, tierische Produkte und Kot oder Urin - Bestimmung des effektiven Brennwerts - Verfahren mit der kalorimetrischen Bombe, vol 9831. Beuth, Berlin. https://doi.org/10.31030/9511774

    Book  Google Scholar 

  41. Haines PJ, Kett V, Gaisford S (eds) (2016) Principles of thermal analysis and calorimetry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  42. Gabbott P (ed) (2008) Principles and applications of thermal analysis. Blackwell, Oxford. https://doi.org/10.1002/9780470697702

    Book  Google Scholar 

  43. Hemminger WF, Cammenga HK (1989) Methoden der Thermischen Analyse. Springer, Berlin. [u.a.]

    Book  Google Scholar 

  44. Fischer M, Wohlfahrt S, Varga J, Matuschek G, Saraji-Bozorgzad MR, Walte A, Denner T, Zimmermann R (2016) Evolution of volatile flavor compounds during roasting of nut seeds by thermogravimetry coupled to fast-cycling optical heating gas chromatography-mass spectrometry with electron and photoionization. Food Anal Method 10(1):49. https://doi.org/10.1007/s12161-016-0549-8

    Article  Google Scholar 

  45. Czarnecki J (2015) Precision thermogravimetry. J Therm Anal Calorim 120(1):139. https://doi.org/10.1007/s10973-014-4384-0

    Article  CAS  Google Scholar 

  46. Li R, Lin D, Roos YH, Miao S (2019) Glass transition, structural relaxation and stability of spray-dried amorphous food solids: a review. Dry Technol 37(3):287. https://doi.org/10.1080/07373937.2018.1459680

    Article  Google Scholar 

  47. Raemy A, Lambelet P, Rousset P (2005) Calorimetric information about food and food constituents. In: Lörinczy D (ed) The nature of biological systems as revealed by thermal methods. Springer, Dordrecht, pp 69–98. https://doi.org/10.1007/1-4020-2219-0_4

    Chapter  Google Scholar 

  48. Raemy A (2003) Behavior of foods studied by thermal analysis: introduction. J Therm Anal Calorim 71(1):273. https://doi.org/10.1023/A:1022299124618

    Article  CAS  Google Scholar 

  49. Levitsky DI (ed) (2004) The nature of biological systems as revealed by thermal methods. Kluwer Academic, Dordrecht

    Google Scholar 

  50. Figura LO (2003) Thermoanalytische Charakterisierung teilkristalliner Trehalose. In: Kunze W (ed) Anwenderseminar Thermische Analyse in der pharmazeutischen Industrie und der Lebensmitteltechnologie. Reuters, Alzenau, pp 125–137

    Google Scholar 

  51. Merzlyakov M, Schick C (2000) Optimization of experimental parameters in TMDSC. The influence of non-linear and non-stationary thermal response. J Therm Anal Calorim 61(2):649. https://doi.org/10.1023/A:1010106626114

    Article  CAS  Google Scholar 

  52. Höhne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of TMDSC: Part1: Basic considerations. Thermochim Acta 391(1):51. https://doi.org/10.1016/S0040-6031(02)00163-6

    Article  Google Scholar 

  53. Lamprecht I (1999) Chapter 4 – Combustion calorimetry. In: Kemp RB (ed) Handbook of thermal analysis and calorimetry, vol 4. Elsevier Science B.V., pp 175–218. https://doi.org/10.1016/S1573-4374(99)80007-7

    Chapter  Google Scholar 

  54. DIN 51900 (2000) Prüfung fester und flüssiger Brennstoffe - Bestimmung des Brennwertes mit dem Bomben-Kalorimeter und Berechnung des Heizwertes. Beuth, Berlin. https://doi.org/10.31030/8511091

    Book  Google Scholar 

  55. BVL L 00.00-5 (1982) Ambulante Temperaturmessung bei gefrorenen und tiefgefrorenen Lebensmitteln; Referenzverfahren. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Berlin

    Google Scholar 

  56. Deutsches Institut für Normung (2009) DIN EN ISO 5764 Milch - Bestimmung des Gefrierpunktes - Thermistor-Kryoskop-Verfahren, Referenzverfahren. Beuth, Berlin. https://doi.org/10.31030/1508099

    Book  Google Scholar 

  57. Gao T, Tian Y, Zhu Z, Sun D-W (2020) Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends Food Sci Technol 99:311. https://doi.org/10.1016/j.tifs.2020.02.019

    Article  CAS  Google Scholar 

  58. Mukama M, Ambaw A, Opara UL (2020) Thermophysical properties of fruit—a review with reference to postharvest handling. J Food Meas Charact 14(5):2917. https://doi.org/10.1007/s11694-020-00536-8

    Article  Google Scholar 

  59. Baïri A, Laraqi N, de María JMG (2007) Determination of thermal diffusivity of foods using 1D Fourier cylindrical solution. J Food Eng 78(2):669. https://doi.org/10.1016/j.jfoodeng.2005.11.004

    Article  Google Scholar 

  60. Kumcuoglu S, Tavman S, Nesvadba P, Tavman IH (2007) Thermal conductivity measurements of a traditional fermented dough in the frozen state. J Food Eng 78(3):1079. https://doi.org/10.1016/j.jfoodeng.2005.12.020

    Article  Google Scholar 

  61. Vera-Medina G, Marín E, Calderón A, Díaz Góngora JAI, Peña-Rodríguez G, Delgado-Vasallo O (2013) A method for heat capacity measurement by photoacoustics. Measurement 46(3):1208. https://doi.org/10.1016/j.measurement.2012.10.032

    Article  Google Scholar 

  62. Glavina MY, Di Scala KC, Ansorena R, del Valle CE (2006) Estimation of thermal diffusivity of foods using transfer functions. LWT – Food Sci Technol 39(5):455. https://doi.org/10.1016/j.lwt.2005.03.010

    Article  CAS  Google Scholar 

  63. Mohamed IO (2010) Development of a simple and robust inverse method for determination of thermal diffusivity of solid foods. J Food Eng 101(1):1. https://doi.org/10.1016/j.jfoodeng.2010.05.002

    Article  Google Scholar 

  64. Carson JK, Wang J, North MF, Cleland DJ (2016) Effective thermal conductivity prediction of foods using composition and temperature data. J Food Eng 175:65. https://doi.org/10.1016/j.jfoodeng.2015.12.006

    Article  Google Scholar 

  65. Krokida MK, Michailidis PA, Maroulis ZB, Saravacos GD (2002) Literature data of thermal conductivity of foodstuffs. Int J Food Properties 5(1):63. https://doi.org/10.1081/Jfp-120015594

    Article  Google Scholar 

  66. Krokida MK, Zogzas NP, Maroulis ZB (2001) Mass transfer coefficient in food processing: compilation of literature data. Int J Food Properties 4(3):373. https://doi.org/10.1081/JFP-100108643

    Article  Google Scholar 

  67. Kubásek M, Houška M, Landfeld A, Strohalm J, Kamarád J, Žitný R (2006) Thermal diffusivity estimation of the olive oil during its high-pressure treatment. J Food Eng 74(3):286. https://doi.org/10.1016/j.jfoodeng.2005.03.019

    Article  Google Scholar 

  68. Håkansson A (2019) Estimating convective heat transfer coefficients and uncertainty thereof using the general uncertainty management (GUM) framework. J Food Eng 263:53. https://doi.org/10.1016/j.jfoodeng.2019.05.031

    Article  Google Scholar 

  69. Safari A, Salamat R, Baik OD (2018) A review on heat and mass transfer coefficients during deep-fat frying: determination methods and influencing factors. J Food Eng 230:114. https://doi.org/10.1016/j.jfoodeng.2018.01.022

    Article  CAS  Google Scholar 

  70. Ulpiani G (2019) Water mist spray for outdoor cooling: a systematic review of technologies, methods and impacts. Appl Energy 254:113647. https://doi.org/10.1016/j.apenergy.2019.113647

    Article  Google Scholar 

  71. Yang Y, Cui G, Lan CQ (2019) Developments in evaporative cooling and enhanced evaporative cooling – a review. Renew Sustain Energy Rev 113:109230. https://doi.org/10.1016/j.rser.2019.06.037

    Article  Google Scholar 

  72. Zou L, Zhang X, Zheng Q (2020) Research progress on preparation of binary ice by vacuum flash evaporation: a review. Int J Refrig. https://doi.org/10.1016/j.ijrefrig.2020.10.005

  73. Brooks S, Quarini G, Tierney M, Yun X, Lucas E (2020) Conditions for continuous ice slurry generation in a nylon helical coiled heat exchanger. Therm Sci Eng Prog 15:100427. https://doi.org/10.1016/j.tsep.2019.100427

    Article  Google Scholar 

  74. Kauffeld M, Wang MJ, Goldstein V, Kasza KE (2010) Ice slurry applications. Int J Refrig 33(8):1491. https://doi.org/10.1016/j.ijrefrig.2010.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kauffeld M, Kawaji M, Egolf PW (eds) (2005) Handbook on ice slurries – fundamentals and engineering. Int Inst Refrig, Paris

    Google Scholar 

  76. De Meuter P, Rahier H, Van Mele B (2004) Recrystallisation of starch studied with MDSC. In: Lörinczy D (ed) The nature of biological systems as revealed by thermal methods. Kluwer Academic, Dordrecht

    Google Scholar 

  77. Rangelov A, Arnaudov L, Stoyanov S, Spassov T (2017) Gelatinization of industrial starches studied by DSC and TO. Bulg Chem Commun 49(2):422

    Google Scholar 

  78. Kovrlija R, Rondeau-Mouro C (2017) Hydrothermal changes of starch monitored by combined NMR and DSC methods. Food Bioproc Technol 10(3):445. https://doi.org/10.1007/s11947-016-1832-9

    Article  CAS  Google Scholar 

  79. Alamri MS, Al-Ruquie IM, Hussain S, Mohamed AA, Xu J (2015) Gelatinisation kinetics of corn and chickpea starches using DSC, RVA and dynamic rheometry. Qual Assur Saf Crop Food 7(4):459. https://doi.org/10.3920/Qas2013.0374

    Article  CAS  Google Scholar 

  80. Xie FW, Liu WC, Liu P, Wang J, Halley PJ, Yu L (2010) Starch thermal transitions comparatively studied by DSC and MTDSC. Starch-Starke 62(7):350

    Article  CAS  Google Scholar 

  81. Genkina NK, Kozlov SS, Martirosyan VV, Kiseleva VI (2014) Thermal behavior of maize starches with different amylose/amylopectin ratio studied by DSC analysis. Starch-Starke 66(7–8):700. https://doi.org/10.1002/star.201300220

    Article  CAS  Google Scholar 

  82. De Oliveira GM, Masuchi MH, Basso RC, Zuliani Stroppa VL, Ribeiro APB, Kieckbusch TG (2014) DSC application to lipid modification processes. CRC Press, pp 221–242. https://doi.org/10.1201/b17739

    Book  Google Scholar 

  83. Zhang XY, Zhu WX, Tong QY, Ren F (2012) Rheological, thermal properties, and gelatinization kinetics of tapioca starch-trehalose blends studied by non-isothermal DSC technology. Starch-Starke 64(12):996. https://doi.org/10.1002/star.201200111

    Article  CAS  Google Scholar 

  84. Xiville NR, Lorente LT, Kordikowski A (2012) MDSC parameter optimization for the determination of glass transitions using a design of experiments approach. Int J Pharm 422(1–2):271. https://doi.org/10.1016/j.ijpharm.2011.11.009. Epub 2011 Nov 15

    Article  CAS  PubMed  Google Scholar 

  85. Verhoeven N, Neoh TL, Furuta T, Yamamoto C, Ohashi T, Yoshii H (2012) Characteristics of dehydration kinetics of dihydrate trehalose to its anhydrous form in ethanol by DSC. Food Chem 132(4):1638. https://doi.org/10.1016/j.foodchem.2011.06.010

    Article  CAS  Google Scholar 

  86. Rahman MS, Senadeera W, Al-Alawi A, Truong T, Bhandari B, Al-Saidi G (2011) Thermal transition properties of spaghetti measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Food Bioproc Technol 4(8):1422. https://doi.org/10.1007/s11947-009-0258-z

    Article  Google Scholar 

  87. Venir E, Spaziani M, Maltini E (2010) Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem 122(2):410. https://doi.org/10.1016/j.foodchem.2009.04.012

    Article  CAS  Google Scholar 

  88. Rahman MS, Al-Saidi G, Guizani N, Abdullah A (2010) Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim Acta 509(1–2):111. https://doi.org/10.1016/j.tca.2010.06.011

    Article  CAS  Google Scholar 

  89. Tironi V, de Lamballerie-Anton M, Le-Bail A (2009) DSC determination of glass transition temperature on sea bass (Dicentrarchus labrax) muscle: effect of high-pressure processing. Food Bioproc Technol 2(4):374. https://doi.org/10.1007/s11947-007-0041-y

    Article  Google Scholar 

  90. Steeneken PAM, Woortman AJJ (2009) Identification of the thermal transitions in potato starch at a low water content as studied by preparative DSC. Carbohydr Polym 77(2):288

    Article  CAS  Google Scholar 

  91. Strezov V, Evans TJ (2005) Thermal analysis of the reactions and kinetics of green coffee during roasting. Int J Food Prop 8(1):101. https://doi.org/10.1081/JFP-200048060

    Article  CAS  Google Scholar 

  92. Roe KD, Labuza TP (2005) Glass transition and crystallization of amorphous trehalose-sucrose mixtures. Int J Food Prop 8:559. https://doi.org/10.1080/10942910500269824

    Article  CAS  Google Scholar 

  93. Sandoval A, Nuñez M, Müller A, Della Valle G, Lourdin D (2009) Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydr Polym 76:528. https://doi.org/10.1016/j.carbpol.2008.11.019

    Article  CAS  Google Scholar 

  94. Figura LO, Epple M (1995) Anhydrous α-lactose. A study with DSC and TXRD. J Therm Anal 44(1):45. https://doi.org/10.1007/BF02547132

    Article  CAS  Google Scholar 

  95. Torré J-P, Plantier F, Marlin L, André R, Haillot D (2020) A novel stirred microcalorimetric cell for DSC measurements applied to the study of ice slurries and clathrate hydrates. Chem Eng Res Des 160:465. https://doi.org/10.1016/j.cherd.2020.06.019

    Article  CAS  Google Scholar 

  96. Masavang S, Roudaut G, Champion D (2019) Identification of complex glass transition phenomena by DSC in expanded cereal-based food extrudates: impact of plasticization by water and sucrose. J Food Eng 245:43. https://doi.org/10.1016/j.jfoodeng.2018.10.008

    Article  CAS  Google Scholar 

  97. Roos YH (2021) Glass transition and re-crystallization phenomena of frozen materials and their effect on frozen food quality. Foods 10(2). https://doi.org/10.3390/foods10020447

  98. ASTM D3418 (2015) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D3418-15

    Book  Google Scholar 

  99. ASTM E793 (2001) Standard test method for enthalpies of fusion and crystallization by differential scanning calorimetry. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0793-01

    Book  Google Scholar 

  100. ASTM E794 (2018) Standard test method for melting and crystallization temperatures by thermal analysis. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0794-06R18

    Book  Google Scholar 

  101. ASTM E1269 (2018) Standard test method for determining specific heat capacity by differential scanning calorimetry. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E1269-11R18

    Book  Google Scholar 

  102. ASTM E1356 (2014) Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E1356-08R14

    Book  Google Scholar 

  103. DIN 51007 (2019) Thermische Analyse (TA) - Differenz-Thermoanalyse (DTA) und Dynamische Differenzkalorimetrie (DSC) - Allgemeine Grundlagen. Beuth, Berlin. https://doi.org/10.31030/3025544

    Book  Google Scholar 

  104. DIN EN ISO 11357-1 (2017) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 1: Allgemeine Grundlagen I. Beuth, Berlin. https://doi.org/10.31030/2589772

    Book  Google Scholar 

  105. DIN EN ISO 11357-2 (2020) Kunststoffe - Dynamische Differenzkalorimetrie (DSC) - Teil 2: Bestimmung der Glasübergangstemperatur und der Glasübergangsstufenhöhe. Beuth, Berlin. https://doi.org/10.31030/3127571

    Book  Google Scholar 

  106. DIN EN ISO 11357-3 (2018) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 3: Bestimmung der Schmelz- und Kristallisationstemperatur und der Schmelz- und Kristallisationsenthalpie. Beuth, Berlin. https://doi.org/10.31030/2798705

    Book  Google Scholar 

  107. DIN EN ISO 11357-4 (2020) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 4: Bestimmung der spezifischen Wärmekapazität. Beuth, Berlin. https://doi.org/10.31030/3154215

    Book  Google Scholar 

  108. DIN EN ISO 11357-5 (2014) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 5: Bestimmung von charakteristischen Reaktionstemperaturen und -zeiten, Reaktionsenthalpie und Umsatz. Beuth, Berlin. https://doi.org/10.31030/2143352

    Book  Google Scholar 

  109. DIN EN ISO 11357-6 (2018) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 6: Bestimmung der Oxidations-Induktionszeit (isothermische OIT) und Oxidations-Induktionstemperatur (dynamische OIT). Beuth, Berlin. https://doi.org/10.31030/2798706

    Book  Google Scholar 

  110. DIN EN ISO 11357-7 (2015) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 7: Bestimmung der Kristallisationskinetik. Beuth, Berlin. https://doi.org/10.31030/2309304

    Book  Google Scholar 

  111. DIN EN ISO 11357-8 (2020) Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 8: Bestimmung der Wärmeleitfähigkeit. Beuth, Berlin. https://doi.org/10.31030/3123472

    Book  Google Scholar 

  112. DIN EN ISO 9831 (2004) Futtermittel, tierische Produkte und Kot oder Urin - Bestimmung des effektiven Brennwerts. Beuth, Berlin. https://doi.org/10.31030/9511774

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figura, L.O., Teixeira, A.A. (2023). Thermal Properties. In: Food Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-27398-8_8

Download citation

Publish with us

Policies and ethics