Skip to main content

Permeability

  • Chapter
  • First Online:
Food Physics

Abstract

The permeation of gaseous substances through packaging materials is based on diffusion as a mass transport mechanism. Under the assumption of stationary conditions, the determination of the water vapor and oxygen permeability on plastic films is demonstrated and illustrated with examples. Comparison with conduction of electric current or heat flow allows the development of electro-analog models for the calculation of permeation. In this way, values for films made of several materials can also be easily calculated in order to design composite films with required properties, e.g., from biopolymers. Using the example of permeation steady state diffusion-controlled transport processes can be understood and the multitude of specific terms be ordered. At the end of the chapter examples from packaging technology are listed, which can be used for further studies and as suggestions for own scientific work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DIN 1343 (1990) Referenzzustand, Normzustand, Normvolumen; Begriffe und Werte. Beuth, Berlin. https://doi.org/10.31030/2333155

    Book  Google Scholar 

  2. Robertson GL (2012) Food packaging: principles and practice. Marcel Dekker, New York

    Google Scholar 

  3. Rodríguez-Rojas A, Arango Ospina A, Rodríguez-Vélez P, Arana-Florez R (2019) ¿What is the new about food packaging material? A bibliometric review during 1996–2016. Trends Food Sci Technol 85:252. https://doi.org/10.1016/j.tifs.2019.01.016

    Article  CAS  Google Scholar 

  4. Majid I, Ahmad Nayik G, Mohammad Dar S, Nanda V (2018) Novel food packaging technologies: innovations and future prospective. J Saudi Soc Agric Sci 17(4):454. https://doi.org/10.1016/j.jssas.2016.11.003

    Article  Google Scholar 

  5. Deutsches Institut für Normung (2015) Verpackung 1 - DIN-Taschenbuch 490/1. Beuth, Berlin

    Google Scholar 

  6. Deutsches Institut für Normung (2012) Verpackung 2 - DIN-Taschenbuch 490/2. Beuth, Berlin

    Google Scholar 

  7. Gajdoš J, Galić K, Kurtanjek Ž, Ciković N (2000) Gas permeability and DSC characteristics of polymers used in food packaging. Polym Test 20(1):49. https://doi.org/10.1016/s0142-9418(99)00078-1

    Article  Google Scholar 

  8. Giacinti Baschetti M, Minelli M (2020) Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: a review. Polym Test 89:106606. https://doi.org/10.1016/j.polymertesting.2020.106606

    Article  CAS  Google Scholar 

  9. ISO 15105 (2007) Kunststoffe - Folien und Flächengebilde - Bestimmung der Gasdurchlässigkeit - Teil 1: Differentialdruck-Verfahren. Beuth, Berlin

    Google Scholar 

  10. ASTM D1434 (2015) Standard test method for determining gas permeability characteristics of plastic film and sheeting. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D1434-82R15E01

    Book  Google Scholar 

  11. DIN 53122 (2001) Prüfung von Kunststoff-Folien, Elastomerfolien, Papier, Pappe und anderen Flächengebilden - Bestimmung der Wasserdampfdurchlässigkeit - Teil 1: Gravimetrisches Verfahren. Beuth, Berlin

    Google Scholar 

  12. ISO/CIE 11664-6 (2014) Farbmetrik - Teil 6: CIEDE2000 Formel für die Farbdifferenz. Beuth, Berlin

    Google Scholar 

  13. Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41(1):232. https://doi.org/10.2307/1931961

    Article  Google Scholar 

  14. Bleisch G, Langowski H-C, Majschak JP (2014) Lexikon Verpackungstechnik. Behrs, Hamburg

    Google Scholar 

  15. DIN 50014 (2018) Normalklimate für Vorbehandlung und/oder Prüfung – Festlegungen. Beuth, Berlin. https://doi.org/10.31030/2866227

    Book  Google Scholar 

  16. Elsner P, Eyerer P, Hirth T (2012) Domininghaus - Kunststoffe - Eigenschaften und Anwendungen. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-16173-5

    Book  Google Scholar 

  17. Welti-Chanes J, Vélez-Ruiz JF, Barbosa-Cánovas GV (2002) Transport phenomena in food processing. CRC Press, Boca Raton. https://doi.org/10.1201/9781420006261

    Book  Google Scholar 

  18. Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S (2020) Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 101:106. https://doi.org/10.1016/j.tifs.2020.05.001

    Article  CAS  Google Scholar 

  19. Enescu D, Cerqueira MA, Fucinos P, Pastrana LM (2019) Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 134:110814. https://doi.org/10.1016/j.fct.2019.110814

    Article  CAS  PubMed  Google Scholar 

  20. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766. https://doi.org/10.1016/j.progpolymsci.2011.02.003

    Article  CAS  Google Scholar 

  21. Topuz F, Uyar T (2020) Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 130:108927. https://doi.org/10.1016/j.foodres.2019.108927

    Article  CAS  PubMed  Google Scholar 

  22. Jildeh NB, Matouq M (2020) Nanotechnology in packing materials for food and drug stuff opportunities. J Environ Chem Eng 8(5):104338. https://doi.org/10.1016/j.jece.2020.104338

    Article  CAS  Google Scholar 

  23. Alfei S, Marengo B, Zuccari G (2020) Nanotechnology application in food packaging: a plethora of opportunities versus pending risks assessment and public concerns. Food Res Int 137:109664. https://doi.org/10.1016/j.foodres.2020.109664

    Article  CAS  PubMed  Google Scholar 

  24. Dudefoi W, Villares A, Peyron S, Moreau C, Ropers MH, Gontard N, Cathala B (2018) Nanoscience and nanotechnologies for biobased materials, packaging and food applications: new opportunities and concerns. Innovative Food Sci Emerg Technol 46:107. https://doi.org/10.1016/j.ifset.2017.09.007

    Article  CAS  Google Scholar 

  25. Nakazato G, Kobayashi RKT, Seabra AB, Duran N (2017) Use of nanoparticles as a potential antimicrobial for food packaging. Academic Press, pp 413–447. https://doi.org/10.1016/b978-0-12-804303-5.00012-2

    Book  Google Scholar 

  26. Ntim SA, Noonan GO (2017) Nanotechnology in food packaging. Janua 2017:118–142. https://doi.org/10.1039/9781782626879-00118

    Article  Google Scholar 

  27. Singh P, Ikram S (2017) Nanotechnology in food packaging: an overview. J Adv Mater 1:19

    Google Scholar 

  28. Khalaj MJ, Ahmadi H, Lesankhosh R, Khalaj G (2016) Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: nano-clay modified with iron nanoparticles. Trends Food Sci Technol 51:41. https://doi.org/10.1016/j.tifs.2016.03.007

    Article  CAS  Google Scholar 

  29. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28(4):273. https://doi.org/10.1016/j.jksus.2016.05.004

    Article  Google Scholar 

  30. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2014.09.009

  31. Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19. https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  32. Mousavi Khaneghah A, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1. https://doi.org/10.1016/j.fbp.2018.05.001

    Article  CAS  Google Scholar 

  33. Santos JCP, Sousa RCS, Otoni CG, Moraes ARF, Souza VGL, Medeiros EAA, Espitia PJP, Pires ACS, Coimbra JSR, Soares NFF (2018) Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innovative Food Sci Emerg Technol 48:179. https://doi.org/10.1016/j.ifset.2018.06.008

    Article  CAS  Google Scholar 

  34. Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int 83:60. https://doi.org/10.1016/j.foodres.2016.02.018

    Article  CAS  Google Scholar 

  35. Zanetti M, Carniel TK, Dalcanton F, dos Anjos RS, Gracher Riella H, de Araújo PHH, de Oliveira D, Antônio Fiori M (2018) Use of encapsulated natural compounds as antimicrobial additives in food packaging: a brief review. Trends Food Sci Technol 81:51. https://doi.org/10.1016/j.tifs.2018.09.003

    Article  CAS  Google Scholar 

  36. Makwana S, Choudhary R, Kohli P (2015) Advances in antimicrobial food packaging with nanotechnology and natural antimicrobials. Int J Food Sci Nutr Eng 5(4):169. https://doi.org/10.5923/j.food.20150504.02

    Article  Google Scholar 

  37. Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan AC, Vikhraman M (2013) Antimicrobial agents for food packaging applications. https://doi.org/10.1016/j.tifs.2013.08.001

  38. Kim D, Seo J (2018) A review: breathable films for packaging applications. Trends Food Sci Technol 76:15. https://doi.org/10.1016/j.tifs.2018.03.020

    Article  CAS  Google Scholar 

  39. Saha N, Benlikaya R, Slobodian P, Saha P (2015) Breathable and polyol based hydrogel food packaging. J Biobased Mater Bioenergy 9(2):136. https://doi.org/10.1166/jbmb.2015.1515

    Article  CAS  Google Scholar 

  40. Del Nobile MA, Buonocore GG, Limbo S, Fava P (2003) Shelf life prediction of cereal-based dry foods packed in moisture-sensitive films. J Food Sci 68(4):1292. https://doi.org/10.1111/j.1365-2621.2003.tb09642.x

    Article  Google Scholar 

  41. Krokida MK, Zogzas NP, Maroulis ZB (2001) Mass transfer coefficient in food processing: compilation of literature data. Int J Food Prop 4(3):373. https://doi.org/10.1081/JFP-100108643

    Article  Google Scholar 

  42. Rovera C, Ghaani M, Farris S (2020) Nano-inspired oxygen barrier coatings for food packaging applications: an overview. Trends Food Sci Technol 97:210. https://doi.org/10.1016/j.tifs.2020.01.024

    Article  CAS  Google Scholar 

  43. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications – a review. Int J Biol Macromol 159:1165. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  44. Marsin AM, Muhamad II, Anis SNS, Lazim NAM, Ching LW, Dolhaji NH (2020) Essential oils as insect repellent agents in food packaging: a review. Eur Food Res Technol 246(8):1519. https://doi.org/10.1007/s00217-020-03511-1

    Article  CAS  Google Scholar 

  45. Alpaslan D (2019) Use of colorimetric hydrogel as an indicator for food packaging applications. Bulletin of Materials Science 42(5):247. https://doi.org/10.1007/s12034-019-1908-z

    Article  CAS  Google Scholar 

  46. Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MA, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106. https://doi.org/10.1016/j.carbpol.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  47. Singh S, Gaikwad KK, Lee M, Lee YS (2018) Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. J Food Eng 234:41. https://doi.org/10.1016/j.jfoodeng.2018.04.014

    Article  CAS  Google Scholar 

  48. Meritaine R, de Souza MM, Prentice C (2018) Biodegradable films: an alternative food packaging:307–342. https://doi.org/10.1016/B978-0-12-811516-9.00009-9

  49. Liu XW, Wang LQ, Qiao YF, Sun XX, Ma SF, Cheng XY, Qi WF, Huang WQ, Li YH (2018) Adhesion of liquid food to packaging surfaces: mechanisms, test methods, influencing factors and anti-adhesion methods. J Food Eng 228:102. https://doi.org/10.1016/j.jfoodeng.2018.02.002

    Article  CAS  Google Scholar 

  50. Ahmed I, Lin H, Zou L, Brody AL, Li ZX, Qazi IM, Pavase TR, Lv LT (2017) A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 82:163. https://doi.org/10.1016/j.foodcont.2017.06.009

    Article  CAS  Google Scholar 

  51. Acerbi F, Guillard V, Guillaume C, Gontard N (2016) Assessment of gas permeability of the whole packaging system mimicking industrial conditions. Food Packaging Shelf Life 8:81. https://doi.org/10.1016/j.fpsl.2016.04.003

    Article  Google Scholar 

  52. Vu CH, Won K (2013) Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 140(1–2):52. https://doi.org/10.1016/j.foodchem.2013.02.056

    Article  CAS  PubMed  Google Scholar 

  53. Lee SJ, Rahman ATMM (2014) In: Han JH (ed) Intelligent packaging for food products. Academic Press, San Diego, pp 171–209. https://doi.org/10.1016/b978-0-12-394601-0.00008-4

    Chapter  Google Scholar 

  54. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39(1):47. https://doi.org/10.1016/j.tifs.2014.06.009

    Article  CAS  Google Scholar 

  55. Müller P, Schmid M (2019) Intelligent packaging in the food sector: a brief overview. Foods 8(1). https://doi.org/10.3390/foods8010016

  56. Finnegan E, Mahajan PV, O’Connell M, Francis GA, O’Beirne D (2013) Modelling respiration in fresh-cut pineapple and prediction of gas permeability needs for optimal modified atmosphere packaging. Postharvest Biol Technol 79:47. https://doi.org/10.1016/j.postharvbio.2012.12.015

    Article  CAS  Google Scholar 

  57. Dumas C, Mittal GS (2002) Heat and mass transfer properties of pizza during baking. Int J Food Prop 5(1):161. https://doi.org/10.1081/Jfp-120015599

    Article  Google Scholar 

  58. Muthu SS (2021) Sustainable packaging. Springer, Singapore. https://doi.org/10.1007/978-981-16-4609-6

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figura, L.O., Teixeira, A.A. (2023). Permeability. In: Food Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-27398-8_7

Download citation

Publish with us

Policies and ethics