Skip to main content

Radioactivity

  • Chapter
  • First Online:
Food Physics

Abstract

Radioactivity occurs in food in the form of natural radioactivity or in the form of contamination. In this chapter, the basic concepts of radiation types, radioactive decay, and the effect of radioactive radiation are explained in simple words and underpinned by calculated examples. By compiling the quantities of dosimetry and its units, the magnitude of natural and civilizational radiation exposure can be understood. At the end of the chapter, numerous examples of measurement methods for radioactive irradiation are listed, which are intended to encourage further study in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieser KH (1992) Einführung in die Kernchemie. Weinheim

    Google Scholar 

  2. Lexikon der Physik (1998) Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  3. Umweltradioaktivität und Strahlenbelastung - Jahresbericht 2016 (2016). Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), Bonn

    Google Scholar 

  4. BfS (2020) Natural radioactivity in food. https://www.bfs.de/EN/topics/ion/environment/foodstuffs/radioactivity-food/radioactivity-food.html. Accessed 2020-12-17

  5. LGL (2020) Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit. https://www.lgl.bayern.de/lebensmittel/chemie/kontaminanten/radioaktivitaet/

  6. Stansfield CM (2003) Legislation | contaminants and adulterants. In: Caballero B (ed) Encyclopedia of food sciences and nutrition. Academic, Oxford, pp 3507–3513. https://doi.org/10.1016/B0-12-227055-X/00689-1

    Chapter  Google Scholar 

  7. Souci SW, Fachmann W, Kraut H (2016) Die Zusammensetzung der Lebensmittel, Nährwert-Tabellen. Wissenschaftliche Verlagsgesellschaft (WVG), Stuttgart

    Google Scholar 

  8. Krieger H (2004) Grundlagen der Strahlungsphysik und des Strahlenschutzes. Springer, Wiesbaden. doi:https://doi.org/10.1007/978-3-8348-2238-3

  9. UNSCEAR (2000) Sources and effects of ionizing radiation (2000). United Nations, New York

    Google Scholar 

  10. Ehlermann DAE (2016) Wholesomeness of irradiated food. Radiat Phys Chem 129:24. https://doi.org/10.1016/j.radphyschem.2016.08.014

    Article  CAS  Google Scholar 

  11. Ehlermann DAE (2016) Particular applications of food irradiation: meat, fish and others. Radiat Phys Chem 129:53. https://doi.org/10.1016/j.radphyschem.2016.07.027

    Article  CAS  Google Scholar 

  12. Kessler HG (2002) Food and bio process engineering: dairy technology. A. Kessler, München

    Google Scholar 

  13. Jan K, Bashir K, Maurya VK (2021) Gamma irradiation and food properties. In: Knoerzer K, Muthukumarappan K (eds) Innovative food processing technologies. Elsevier, Oxford, pp 41–60. https://doi.org/10.1016/B978-0-08-100596-5.23052-7

    Chapter  Google Scholar 

  14. Kocol H (2001) Radioactivity in food and water. In: Hui YH, Kitts D, Stanfield PS (eds) Foodborne disease handbook. CRC Press, Boca Raton. https://doi.org/10.1201/9781351072113

    Chapter  Google Scholar 

  15. Feliciano CP (2018) High-dose irradiated food: current progress, applications, and prospects. Radiat Phys Chem 144:34. https://doi.org/10.1016/j.radphyschem.2017.11.010

    Article  CAS  Google Scholar 

  16. Roberts PB (2016) Food irradiation: standards, regulations and world-wide trade. Radiat Phys Chem 129:30. https://doi.org/10.1016/j.radphyschem.2016.06.005

    Article  CAS  Google Scholar 

  17. Marchioni E (2006) ESR as a technique for food irradiation detection. In: Webb GA (ed) Modern magnetic resonance. Springer, Dordrecht, pp 1855–1860. https://doi.org/10.1007/1-4020-3910-7_211

    Chapter  Google Scholar 

  18. Ehlermann DAE (1999) Die Strahlenkonservierung von Lebensmitteln. Bundesanstalt für Ernährung, Karlsruhe. https://doi.org/10.5445/IR/128199

  19. EN 13708 Foodstuffs- Detection of irradiated foodstuff containing crystalline sugar by ESR spectroscopy (2022) Beuth, Berlin

    Google Scholar 

  20. EN 1785 Foodstuffs - Detection of irradiated food containing fat - Gas chromatographic/mass spectrometric analysis of 2-alkylcyclobutanones (2003) Beuth, Berlin. https://doi.org/10.31030/9515264

  21. Deutsches Institut für Normung (2002) DIN EN 1788 Foodstuffs - Thermoluminescence detection of irradiated food from which silicate minerals can be isolated. Beuth, Berlin. https://doi.org/10.31030/9139521

    Book  Google Scholar 

  22. DIN EN 1786 Foodstuffs - Detection of irradiated food containing bone - Method by ESR spectroscopy (1997) Beuth, Berlin. https://doi.org/10.31030/7311426

  23. DIN EN 1787 Foodstuffs - Detection of irradiated foodstuff containing cellulose by ESR spectroscopy (2022) Beuth, Berlin

    Google Scholar 

  24. Detection of irradiated food using photostimulated luminescence (2022) European Commission, Directorate-General for Health and Food Safety, Brussels

    Google Scholar 

  25. Coenen HH, Ermert J (2020) Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2020.07.003

  26. Knuuti J (2004) Positron emission tomography—molecular imaging of biological processes. Int Congr Ser 1265:248. https://doi.org/10.1016/j.ics.2004.06.014

    Article  CAS  Google Scholar 

  27. DelParigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA (2005) Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. NeuroImage 24(2):436. https://doi.org/10.1016/j.neuroimage.2004.08.035

    Article  PubMed  Google Scholar 

  28. Martini F, Hughes DJ, Badolato Bönisch G, Zwick T, Schäfer C, Geppi M, Alam MA, Ubbink J (2020) Antiplasticization and phase behavior in phase-separated modified starch-sucrose blends: A positron lifetime and solid-state NMR study. Carbohydr Polym 250:116931. https://doi.org/10.1016/j.carbpol.2020.116931

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figura, L.O., Teixeira, A.A. (2023). Radioactivity. In: Food Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-27398-8_14

Download citation

Publish with us

Policies and ethics