Skip to main content

Water Activity

  • Chapter
  • First Online:
Food Physics

Abstract

The shelf life of food is strongly dependent on water activity. Water activity is linked to moisture content by use of a sorption isotherm, which graphically describes the relationship between moisture content of a food and its water activity. Isotherms are unique to any one food material and are therefore a fundamental physical property of food materials. In this chapter, the creation of such isotherms and the mathematical modeling of them is demonstrated using examples. With the help of the sorption isotherm, the hygroscopicity of materials can be quantitatively specified. Finally, application examples are listed, which can be used for further studies and as suggestions for your own investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isengard HD (2017) Water - only a simple molecule? Food Chem 236:1. https://doi.org/10.1016/j.foodchem.2017.05.061

    Article  CAS  PubMed  Google Scholar 

  2. Lewicki PP (2004) Water as the determinant of food engineering properties. A review. J Food Eng 61(4):483. https://doi.org/10.1016/S0260-8774(03)00219-X

    Article  Google Scholar 

  3. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: a review. Food Bioprod Process 80(2):118. https://doi.org/10.1205/09603080252938753

    Article  CAS  Google Scholar 

  4. Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP (2008) Water activity in foods: fundamentals and applications. Blackwell Publishing, Hoboken, NJ. https://doi.org/10.1002/9780470376454

    Book  Google Scholar 

  5. Walstra P (2003) Physical chemistry of foods. Marcel Dekker, New York. https://doi.org/10.1201/9780203910436

    Book  Google Scholar 

  6. Atkins PW, De Paula J (2011) Physical chemistry for the life sciences, 2nd edn. W. H. Freeman, Oxford

    Google Scholar 

  7. Driemeier C, Mendes FM, Oliveira MM (2012) Dynamic vapor sorption and thermoporometry to probe water in celluloses. Cellulose. https://doi.org/10.1007/s10570-012-9727-z

  8. Cazier J-BB, Gekas V (2007) Water activity and its prediction: a review. Int J Food Prop 4(1):35–43. https://doi.org/10.1081/JFP-100002187

    Article  Google Scholar 

  9. van der Sman RGM (2017) Predicting the solubility of mixtures of sugars and their replacers using the Flory-Huggins theory. Food Funct 8(1):360

    Article  PubMed  Google Scholar 

  10. Maneffa AJ, Stenner R, Matharu AS, Clark JH, Matubayasi N, Shimizu S (2017) Water activity in liquid food systems: a molecular scale interpretation. Food Chem 237:1133. https://doi.org/10.1016/j.foodchem.2017.06.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Multon LJ, Bizot H (1978) Intermediate moisture foods and water activity determination. Ann Nutr Aliment 32:631

    CAS  PubMed  Google Scholar 

  12. Walstra P (2002) Physical chemistry of foods. Marcel Dekker, New York

    Book  Google Scholar 

  13. Römpp H, Falbe J (2014) Römpp-Lexikon Chemie. Thieme, Stuttgart

    Google Scholar 

  14. Bauer KH, Frömming KH, Führer C (1999) Pharmazeutische Technologie. Deutscher Apotheker Verlag, Stuttgart

    Google Scholar 

  15. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249. https://doi.org/10.1016/j.apgeochem.2006.09.010

    Article  CAS  Google Scholar 

  16. IUPAC (1972) Manual of symbols and terminology for physicochemical quantities and units. Butterworths, London

    Google Scholar 

  17. Mays TJ (2007) A new classification of pore sizes. Stud Surf Sci Catal 160:57

    Article  CAS  Google Scholar 

  18. Gueven A, Hicsasmaz Z (2013) Pore structure in food: simulation, measurement and applications. Springer, New York

    Book  Google Scholar 

  19. Aouaini F, Knani S, Ben Yahia M, Ben Lamine A (2015) Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution. Phys A Stat Mech Appl 432:373. https://doi.org/10.1016/j.physa.2015.03.052

    Article  Google Scholar 

  20. Lawrence M, Jiang Y (2017) Porosity, pore size distribution, micro-structure. Springer, New York, pp 39–71. https://doi.org/10.1007/978-94-024-1031-0_2

    Book  Google Scholar 

  21. Srividya N, Ghoora MD, Padmanabh PR (2017) Antimicrobial nanotechnology: research implications and prospects in food safety. In: Grumezescu AM (ed) Nanotechnology in the agri-food industry. Academic Press, New York, pp 125–165. https://doi.org/10.1016/b978-0-12-804303-5.00004-3

    Chapter  Google Scholar 

  22. Krantz WB, Greenberg AR, Kujundzic E, Yeo A, Hosseini SS (2013) Evapoporometry: a novel technique for determining the pore-size distribution of membranes. J Membr Sci 438(0):153. https://doi.org/10.1016/j.memsci.2013.03.045

    Article  CAS  Google Scholar 

  23. Zdravkov B, Čermák J, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Open Chem 5(2):385. https://doi.org/10.2478/s11532-007-0017-9

    Article  CAS  Google Scholar 

  24. Van den Berg C, Bruin S (1981) Water activity and its estimation in food systems: theoretical aspects. In: Rockland Stewart GFLB (ed) Water activity: influences on food quality. Academic Press, New York, pp 1–61

    Google Scholar 

  25. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  26. Safefood 360° (2014) Water activity (aw) in foods - White Paper. https://safefood360.com/free-resources/whitepapers/

  27. Matissek R, Fischer M, Steiner G (2018) Lebensmittelanalyik. Springer, Berlin. https://doi.org/10.1007/978-3-662-55722-8

    Book  Google Scholar 

  28. Igathinathane C, Womac AR, Sokhansanj S, Pordesimo LO, Womac AR (2007) Moisture sorption thermodynamic properties of corn Stover fraction. Trans ASABE 50(6):2151

    Article  Google Scholar 

  29. Timmermann EO, Chirife J, Iglesias HA (2001) Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J Food Eng 48(1):19. https://doi.org/10.1016/S0260-8774(00)00139-4

    Article  Google Scholar 

  30. Iglesias HA, Chirife J (1982) Handbook of food isotherms: water sorption parameters for food and food components. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-370380-4.50005-0

    Book  Google Scholar 

  31. Rao MA, Rizvi SSH, Datta AK (2005) Engineering properties of food. Food Science and Technology, vol 144, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  32. Nesvadba P, Houška M, Wolf W, Gekas V, Jarvis D, Sadd PA, Johns AI (2004) Database of physical properties of agro-food materials. J Food Eng 61(4):497. https://doi.org/10.1016/S0260-8774(03)00213-9

    Article  Google Scholar 

  33. Rao MA, Rizvi SSH, Datta AK (2005) Engineering properties of foods. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Chirife J, Timmermann EO, Iglesias HA, Boquet R (1992) Some features of the parameter k of the GAB equation as applied to sorption isotherms of selected food materials. J Food Eng 15(1):75. https://doi.org/10.1016/0260-8774(92)90041-4

    Article  Google Scholar 

  35. Lewicki PP (2000) Raoult’s law based food water sorption isotherm. J Food Eng 43(1):31. https://doi.org/10.1016/S0260-8774(99)00130-2

    Article  Google Scholar 

  36. Bonner IJ, Kenney KL (2013) Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L.) Moench). J Stored Prod Res 52:128. https://doi.org/10.1016/j.jspr.2012.11.002

    Article  Google Scholar 

  37. Fan FH, Mou T, Nurhadi B, Roos YH (2017) Water sorption-induced crystallization, structural relaxations and strength analysis of relaxation times in amorphous lactose/whey protein systems. J Food Eng 196:150. https://doi.org/10.1016/j.jfoodeng.2016.10.022

    Article  CAS  Google Scholar 

  38. Telis VRN, Tonon RV (2017) The effects of non-equilibrium states and storage conditions on glass transitions in food. Woodhead Publishing, Sawston, UK, pp 379–403. https://doi.org/10.1016/b978-0-08-100309-1.00020-1

    Book  Google Scholar 

  39. Fan F, Roos YH (2017) Structural strength and crystallization of amorphous lactose in food model solids at various water activities. Innov Food Sci Emerg Technol 40. https://doi.org/10.1016/j.ifset.2016.06.011

  40. Roos YH, Drusch S (2015) Phase transitions in foods, 2nd edn. Woodhead Publishing, Sawston, UK. https://doi.org/10.1016/C2012-0-06577-5

    Book  Google Scholar 

  41. LMIV - Lebensmittelinformationsverordnung (2011)

    Google Scholar 

  42. Labuza TP, Fu B (1993) Growth kinetics for shelf-life prediction: theory and practice. J Ind Microbiol Biotechnol 12(3):309

    Google Scholar 

  43. Kessler HG (2002) Food and bio process engineering: dairy technology. A. Kessler, Munich

    Google Scholar 

  44. Bhandari B, Bansal N, Zhang M, Schuck P (2013) Handbook of food powders: processes and properties. Woodhead Publishing, Cambridge UK. https://doi.org/10.1533/9780857098672

    Book  Google Scholar 

  45. Belitz H-D (1999) Food chemistry: with 531 tables, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  46. Isengard HD (2010) Water in food - the story continues. Food Chem 122(2):387. https://doi.org/10.1016/J.Foodchem.2010.02.056

    Article  CAS  Google Scholar 

  47. Matissek R, Steiner G (2014) Lebensmittelanalytik. Springer, Berlin

    Book  Google Scholar 

  48. Domian E, Brynda-Kopytowska A, Ciesla J, Gorska A (2018) Effect of carbohydrate type on the DVS isotherm-induced phase transitions in spray-dried fat-filled pea protein-based powders. J Food Eng 222:115

    Article  CAS  Google Scholar 

  49. Rahman MS, Al-Belushi RH (2006) Dynamic isopiestic method (DIM): measuring moisture sorption isotherm of freeze-dried garlic powder and other potential uses of DIM. Int J Food Prop 9(3):421

    Article  Google Scholar 

  50. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81(1):89

    Article  Google Scholar 

  51. Rahman S (2009) Food properties handbook. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781420003093

    Book  Google Scholar 

  52. Esteban MA, Marcos A, Fernández-Salguero J (1987) Cryoscopic approach to water activity measurement of non-liquid foods: application to cheese. Food Chem 25(1):31. https://doi.org/10.1016/0308-8146(87)90051-3

    Article  Google Scholar 

  53. Blakey RT, Morales-Partera AM (2016) Microwave dielectric spectroscopy – a versatile methodology for online, non-destructive food analysis, monitoring and process control. Eng Agric Environ Food 9(3):264. https://doi.org/10.1016/j.eaef.2016.02.001

    Article  Google Scholar 

  54. Traffano-Schiffo MV, Castro-Giraldez M, Colom RJ, Fito PJ (2015) Study of the application of dielectric spectroscopy to predict the water activity of meat during drying process. J Food Eng 166:285. https://doi.org/10.1016/j.jfoodeng.2015.06.030

    Article  Google Scholar 

  55. Allan M, Mauer LJ (2017) Dataset of water activity measurements of alcohol:water solutions using a Tunable diode laser. Data Brief 12:364. https://doi.org/10.1016/j.dib.2017.04.017

    Article  PubMed  PubMed Central  Google Scholar 

  56. Steele RJ (1987) Use of polyols to measure equilibrium relative humidity. Int J Food Sci Technol 22:377

    Article  CAS  Google Scholar 

  57. Al-Khalili M, Al-Habsi N, Rahman MS (2021) Application of dynamic temperature-humidity chamber for measuring moisture sorption isotherms of biomaterials as compared to the conventional isopiestic method. Adsorp Sci Technol 2021:1236427. https://doi.org/10.1155/2021/1236427

    Article  CAS  Google Scholar 

  58. Labuza TP, Acott K, TatiNl SR, Lee RY, Flink J, McCall W (1976) Water activity determination: a collaborative study of different methods. J Food Sci 41(4):910. https://doi.org/10.1111/j.1365-2621.1976.tb00751_41_4.x

    Article  CAS  Google Scholar 

  59. Spiess WEL (1984) The water-vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study. J Food Eng 3:51

    Article  Google Scholar 

  60. Jothi JS, Ebara T, Hagura Y, Kawai K (2018) Effect of water sorption on the glass transition temperature and texture of deep-fried models. J Food Eng 237:1. https://doi.org/10.1016/j.jfoodeng.2018.05.014

    Article  CAS  Google Scholar 

  61. Sogabe T, Kawai K, Kobayashi R, Jothi JS, Hagura Y (2018) Effects of porous structure and water plasticization on the mechanical glass transition temperature and textural properties of freeze-dried trehalose solid and cookie. J Food Eng 217:101. https://doi.org/10.1016/j.jfoodeng.2017.08.027

    Article  CAS  Google Scholar 

  62. Abdenouri N, Idlimam A, Kouhila M (2010) Sorption isotherms and thermodynamic properties of powdered milk. Chem Eng Commun 197(8):1109. https://doi.org/10.1080/00986440903412936

    Article  CAS  Google Scholar 

  63. Juarez-Enriquez E, Olivas GI, Zamudio-Flores PB, Ortega-Rivas E, Perez-Vega S, Sepulveda DR (2017) Effect of water content on the flowability of hygroscopic powders. J Food Eng 205:12. https://doi.org/10.1016/j.jfoodeng.2017.02.024

    Article  CAS  Google Scholar 

  64. Edrisi Sormoli M, Langrish TAG (2015) Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT Food Sci Technol 62(1 Part 2):875. https://doi.org/10.1016/j.lwt.2014.09.064

    Article  CAS  Google Scholar 

  65. Vásquez C, Díaz-Calderón P, Enrione J, Matiacevich S (2013) State diagram, sorption isotherm and color of blueberries as a function of water content. Thermochim Acta 570(0):8. https://doi.org/10.1016/j.tca.2013.07.029

    Article  CAS  Google Scholar 

  66. Djendoubi Mrad N, Bonazzi C, Boudhrioua N, Kechaou N, Courtois F (2012) Influence of sugar composition on water sorption isotherms and on glass transition in apricots. J Food Eng 111(2):403. https://doi.org/10.1016/j.jfoodeng.2012.02.001

    Article  CAS  Google Scholar 

  67. Kammoun Bejar A, Boudhrioua Mihoubi N, Kechaou N (2012) Moisture sorption isotherms – experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chem 132(4):1728. https://doi.org/10.1016/j.foodchem.2011.06.059

    Article  CAS  Google Scholar 

  68. McLaughlin CP, Magee TRA (1998) The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J Food Eng 35(3):267. https://doi.org/10.1016/S0260-8774(98)00025-9

    Article  Google Scholar 

  69. Prothon F, Essen T, Ahrné LM (2004) Application of the Guggenheim, Anderson and De Boer model to correlate water activity and moisture content during osmotic dehydration of apples. J Food Eng 61(3):467. https://doi.org/10.1016/S0260-8774(03)00119-5

    Article  Google Scholar 

  70. Murgante B (2012) Computational science and its applications. In: ICCSA 2012: 12th international conference, Salvador de Bahia, Brazil, June 18–21, 2012, Proceedings. Part II. Springer, Berlin

    Google Scholar 

  71. Kaymak-Ertekin F, Sultanoglu M (2001) Moisture sorption isotherm characteristics of peppers. J Food Eng 47(3):225

    Article  Google Scholar 

  72. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J Food Eng. https://doi.org/10.1016/S0260-8774(03)00133-X

  73. Moreira R, Chenlo F, Torres MD (2009) Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition. J Food Eng 94(3):334. https://doi.org/10.1016/j.jfoodeng.2009.03.026

    Article  CAS  Google Scholar 

  74. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders. J Food Eng. https://doi.org/10.1016/S0260-8774(03)00133-X

  75. Delgado AE, Sun D-WW (2002) Desorption isotherms for cooked and cured beef and pork. J Food Eng 51. https://doi.org/10.1016/S0260-8774(01)00053-X

  76. Akmel DC, Kakou KE, Kone KY, Assidjo NE, Kouame P (2015) Desorption isotherms and isosteric heats of fermented cocoa beans (Theobroma cocoa). J Food Res 4(3):138. https://doi.org/10.5539/jfr.v4n3p138

    Article  Google Scholar 

  77. Mosquera LH, Moraga G, Martinez-Navarrete N (2012) Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Res Int 47(2):201. https://doi.org/10.1016/j.foodres.2011.05.019

    Article  CAS  Google Scholar 

  78. Carter BP, Galloway MT, Campbell GS, Carter AH (2015) The critical water activity from dynamic dewpoint isotherms as an indicator of pre-mix powder stability. J Food Meas Charac 9(4):479. https://doi.org/10.1007/s11694-015-9256-1

    Article  Google Scholar 

  79. Yan Z, Sousa-Gallagher MJ, Oliveira FAR (2008) Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2007.10.009

  80. Xu J, Janahar JJ, Park HW, Balasubramaniam VM, Yousef AE (2021) Influence of water activity and acidity on Bacillus cereus spore inactivation during combined high pressure-thermal treatment. LWT 146:111465. https://doi.org/10.1016/j.lwt.2021.111465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figura, L.O., Teixeira, A.A. (2023). Water Activity. In: Food Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-27398-8_1

Download citation

Publish with us

Policies and ethics