Skip to main content

Biologics and Advanced Materials for Spondylolisthesis

  • Chapter
  • First Online:
Spondylolisthesis
  • 346 Accesses

Abstract

Osseous fusion is the goal of spinal fusion surgery. Historically, iliac crest bone grafts have been used to achieve this goal. Newer grafts have been used as graft substitutes or extenders. Biologics are a new frontier in spinal fusion surgery, with evidence of achieving fusion. Except for silicated calcium phosphate, ceramic-based grafts only achieve equivalent fusion results to autologous grafts when mixed with other substrates. Synthetic polymers have not been well studied as bone graft substitutes or extenders. The main drawbacks of ceramic-based biologics are the lack of tensile strength, susceptibility to fracture, and the need for adjunct osteoinductive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedi A, Formanek B, Russell N, et al. Examination of the role of cells in commercially available cellular allografts in spine fusion: an in vivo animal study. J Bone Jt Surg Am. 2020;102(24):e135. https://doi.org/10.2106/JBJS.20.00330.

    Article  Google Scholar 

  2. Cottrill E, Premananthan C, Pennington Z, et al. Radiographic and clinical outcomes of silicate-substituted calcium phosphate (SiCaP) bone grafts in spinal fusion: systematic review and meta-analysis. J Clin Neurosci. 2020;81:353–66. https://doi.org/10.1016/j.jocn.2020.09.073.

    Article  CAS  PubMed  Google Scholar 

  3. Watson JT. Chapter 5: Biology and enhancement of skeletal repair. In: Skeletal trauma. 3rd ed. Philadelphia: Saunders; 2008. p. 79–80.

    Google Scholar 

  4. Plantz MA, Gerlach EB, Hsu WK. Synthetic bone graft materials in spine fusion: current evidence and future trends. Int J Spine Surg. 2021;15(s1):104–12. https://doi.org/10.14444/8058.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001;71(6):354–61.

    Article  CAS  PubMed  Google Scholar 

  6. Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24(Suppl 1):S46–51. https://doi.org/10.1097/BOT.0b013e3181cec48e.

    Article  PubMed  Google Scholar 

  7. Liu B, Lun DX. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139–44. https://doi.org/10.1111/j.1757-7861.2012.00189.x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anghelescu VM, Neculae I, Dincă O, et al. Inflammatory-driven angiogenesis in bone augmentation with bovine hydroxyapatite, β-tricalcium phosphate, and bioglasses: a comparative study. J Immunol Res. 2018;2018:9349207. https://doi.org/10.1155/2018/9349207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang G, Liu Z, Liu Y, et al. Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol. 2021;9:665813. https://doi.org/10.3389/fcell.2021.665813.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17(11):967–78. https://doi.org/10.1007/s10856-006-0432-z.

    Article  CAS  PubMed  Google Scholar 

  11. Cottrill E, Pennington Z, Lankipalle N, et al. The effect of bioactive glasses on spinal fusion: a cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J Clin Neurosci. 2020;78:34–46. https://doi.org/10.1016/j.jocn.2020.04.035.

    Article  PubMed  Google Scholar 

  12. Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured biomaterials for bone regeneration. Front Bioeng Biotechnol. 2020;8:922. https://doi.org/10.3389/fbioe.2020.00922.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taghavi CE, Lee KB, He W, et al. Bone morphogenetic protein binding peptide mechanism and enhancement of osteogenic protein-1 induced bone healing. Spine (Phila Pa 1976). 2010;35(23):2049–56. https://doi.org/10.1097/BRS.0b013e3181cc0220.

    Article  PubMed  Google Scholar 

  14. Yoshii T, Hashimoto M, Egawa S, Hirai T, Inose H, Okawa A. Hydroxyapatite/collagen composite graft for posterior lumbar interbody fusion: a comparison with local bone graft. J Orthop Surg Res. 2021;16(1):639. https://doi.org/10.1186/s13018-021-02798-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park DK, Kim SS, Thakur N, Boden SD. Use of recombinant human bone morphogenetic protein-2 with local bone graft instead of iliac crest bone graft in posterolateral lumbar spine arthrodesis. Spine (Phila Pa 1976). 2013;38(12):E738–47. https://doi.org/10.1097/BRS.0b013e31828fd23c.

    Article  PubMed  Google Scholar 

  16. Glassman SD, Carreon LY, Djurasovic M, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over 60 years of age. Spine (Phila Pa 1976). 2008;33(26):2843–9. https://doi.org/10.1097/BRS.0b013e318190705d.

    Article  PubMed  Google Scholar 

  17. Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Jt Surg Am. 2009;91(6):1377–86. https://doi.org/10.2106/JBJS.H.00200.

    Article  Google Scholar 

  18. Adams CL, Ogden K, Robertson IK, Broadhurst S, Edis D. Effectiveness and safety of recombinant human bone morphogenetic protein-2 versus local bone graft in primary lumbar interbody fusions. Spine (Phila Pa 1976). 2014;39(2):164–71. https://doi.org/10.1097/BRS.0000000000000089.

    Article  PubMed  Google Scholar 

  19. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9. https://doi.org/10.1016/j.spinee.2013.08.060.

    Article  PubMed  Google Scholar 

  20. Coughlan M, Davies M, Mostert AK, et al. A prospective, randomized, multicenter study comparing silicated calcium phosphate versus BMP-2 synthetic bone graft in posterolateral instrumented lumbar fusion for degenerative spinal disorders. Spine (Phila Pa 1976). 2018;43(15):E860–8. https://doi.org/10.1097/BRS.0000000000002678.

    Article  PubMed  Google Scholar 

  21. Bolger C, Jones D, Czop S. Evaluation of an increased strut porosity silicate-substituted calcium phosphate, SiCaP EP, as a synthetic bone graft substitute in spinal fusion surgery: a prospective, open-label study. Eur Spine J. 2019;28(7):1733–42. https://doi.org/10.1007/s00586-019-05926-1.

    Article  PubMed  Google Scholar 

  22. Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg. 2013;74(6):343–50. https://doi.org/10.1055/s-0032-1333420.

    Article  PubMed  Google Scholar 

  23. Nagineni VV, James AR, Alimi M, et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine (Phila Pa 1976). 2012;37(20):E1264–72. https://doi.org/10.1097/BRS.0b013e318265e22e.

    Article  PubMed  Google Scholar 

  24. Alimi M, Navarro-Ramirez R, Parikh K, et al. Radiographic and clinical outcome of silicate-substituted calcium phosphate (Si-CaP) ceramic bone graft in spinal fusion procedures. Clin Spine Surg. 2017;30(6):E845–52. https://doi.org/10.1097/BSD.0000000000000432.

    Article  PubMed  Google Scholar 

  25. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine (Phila Pa 1976). 2008;33(12):1299–304. https://doi.org/10.1097/BRS.0b013e3181732a8e.

    Article  PubMed  Google Scholar 

  26. Hirasawa M, Mure H, Toi H, Nagahiro S. Surgical results of lumbar interbody fusion using calcium phosphate cement. Neurol Med Chir (Tokyo). 2014;54(9):722–6. https://doi.org/10.2176/nmc.st.2013-0393.

    Article  PubMed  Google Scholar 

  27. Parker RM, Malham GM. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J. 2017;26(3):754–63. https://doi.org/10.1007/s00586-016-4927-0.

    Article  PubMed  Google Scholar 

  28. Frantzén J, Rantakokko J, Aro HT, et al. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech. 2011;24(7):455–61. https://doi.org/10.1097/BSD.0b013e31822a20c6.

    Article  PubMed  Google Scholar 

  29. Acharya NK, Kumar RJ, Varma HK, Menon VK. Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech. 2008;21(2):106–11. https://doi.org/10.1097/BSD.0b013e31805fea1f.

    Article  PubMed  Google Scholar 

  30. Barrey C, Broussolle T. Clinical and radiographic evaluation of bioactive glass in posterior cervical and lumbar spinal fusion. Eur J Orthop Surg Traumatol. 2019;29(8):1623–9. https://doi.org/10.1007/s00590-019-02477-5.

    Article  PubMed  Google Scholar 

  31. Lee JH, Kim SK, Kang SS, Han SJ, Lee CK, Chang BS. A long-term follow-up, multicenter, comparative study of the radiologic, and clinical results between a CaO–SiO2–P2O5–B2O3 bioactive glass ceramics (BGS-7) intervertebral spacer and titanium cage in 1-level posterior lumbar interbody fusion. Clin Spine Surg. 2020;33(7):E322–9. https://doi.org/10.1097/BSD.0000000000000950.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee JH, Kong CB, Yang JJ, et al. Comparison of fusion rate and clinical results between CaO–SiO2–P2O5–B2O3 bioactive glass ceramics spacer with titanium cages in posterior lumbar interbody fusion. Spine J. 2016;16(11):1367–76. https://doi.org/10.1016/j.spinee.2016.07.531.

    Article  PubMed  Google Scholar 

  33. Cao Y, Liang Y, Wan S, Jiang C, Jiang X, Chen Z. Pedicle screw with cement augmentation in unilateral transforaminal lumbar interbody fusion: a 2-year follow-up study. World Neurosurg. 2018;118:e288–95. https://doi.org/10.1016/j.wneu.2018.06.181.

    Article  PubMed  Google Scholar 

  34. Wang Z, Liu Y, Rong Z, et al. Clinical evaluation of a bone cement-injectable cannulated pedicle screw augmented with polymethylmethacrylate: 128 osteoporotic patients with 42 months of follow-up. Clinics (Sao Paulo). 2019;74:e346. https://doi.org/10.6061/clinics/2019/e346.

    Article  PubMed  Google Scholar 

  35. Xie Y, Fu Q, Chen ZQ, et al. Comparison between two pedicle screw augmentation instrumentations in adult degenerative scoliosis with osteoporosis. BMC Musculoskelet Disord. 2011;12:286. https://doi.org/10.1186/1471-2474-12-286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nickoli MS, Hsu WK. Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Glob Spine J. 2014;4(3):211–6. https://doi.org/10.1055/s-0034-1378141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onibonoje, S., Radcliff, K. (2023). Biologics and Advanced Materials for Spondylolisthesis. In: Wollowick, A.L., Sarwahi, V. (eds) Spondylolisthesis. Springer, Cham. https://doi.org/10.1007/978-3-031-27253-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27253-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27252-3

  • Online ISBN: 978-3-031-27253-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics