Skip to main content

Transforming Diagnosis and Therapeutics Using Cancer Genomics

  • Chapter
  • First Online:
Therapeutic Approaches in Cancer Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 185))

Abstract

In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell’s genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nogrady B (2020) How cancer genomics is transforming diagnosis and treatment. Nature 579(7800):S10–S10

    Article  CAS  PubMed  Google Scholar 

  2. Tabin CJ et al (1982) Mechanism of activation of a human oncogene. Nature 300(5888):143–149

    Article  CAS  PubMed  Google Scholar 

  3. Health NIO (2016) The human genome project completion: Frequently asked questions. National Human Genome Research Institute

    Google Scholar 

  4. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109(7):807–809

    Article  CAS  PubMed  Google Scholar 

  5. Brittain HK, Scott R, Thomas E (2017) The rise of the genome and personalised medicine. Clin Med 17(6):545

    Article  Google Scholar 

  6. November J (2018) More than Moore’s mores: computers, genomics, and the embrace of innovation. J Hist Biol 51(4):807–840

    Article  PubMed  Google Scholar 

  7. Wallis Y et al (2013) Practice guidelines for the evaluation of pathogenicity and the reporting of sequence variants in clinical molecular genetics. Association for Clinical Genetic Science and the Dutch Society of Clinical Genetic Laboratory Specialists

    Google Scholar 

  8. Aloraifi F et al (2015) Detection of novel germline mutations for breast cancer in non-BRCA 1/2 families. FEBS J 282(17):3424–3437

    Article  CAS  PubMed  Google Scholar 

  9. Farmer H et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  10. Haley B, Roudnicky F (2020) Functional genomics for cancer drug target discovery. Cancer Cell 38(1):31–43

    Article  CAS  PubMed  Google Scholar 

  11. Kamps R et al (2017) Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci 18(2):308

    Article  PubMed Central  PubMed  Google Scholar 

  12. Berger MF, Mardis ER (2018) The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 15(6):353–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nowell P, Hungerford D (2004) A minute chromosome in human chronic granulocytic leukemia. Landmarks Med Genet Cl Pap Comment 132(51):103

    Google Scholar 

  14. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    Article  CAS  PubMed  Google Scholar 

  15. Krontiris TG, Cooper GM (1981) Transforming activity of human tumor DNAs. Proc Natl Acad Sci 78(2):1181–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shih C et al (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290(5803):261–264

    Article  CAS  PubMed  Google Scholar 

  17. Reddy EP et al (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300(5888):149–152

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz R et al (2018) Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378(15):1396–1407

    Article  CAS  PubMed  Google Scholar 

  19. van der Velden DL et al (2019) The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 574(7776):127–131

    Article  PubMed  Google Scholar 

  20. Berland L et al (2019) Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors. J Thorac Dis 11(Suppl 1):S71

    Article  PubMed Central  PubMed  Google Scholar 

  21. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37

    Article  CAS  PubMed  Google Scholar 

  22. Hyman DM, Taylor BS, Baselga J (2017) Implementing genome-driven oncology. Cell 168(4):584–599

    Article  CAS  PubMed  Google Scholar 

  23. Do H, Dobrovic A (2015) Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem 61(1):64–71

    Article  CAS  PubMed  Google Scholar 

  24. Network CGAR (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609

    Article  Google Scholar 

  25. Goswami RS et al (2016) Identification of factors affecting the success of next-generation sequencing testing in solid tumors. Am J Clin Pathol 145(2):222–237

    Article  PubMed  Google Scholar 

  26. Lih C-J et al (2017) Analytical validation of the next-generation sequencing assay for a nationwide signal-finding clinical trial: molecular analysis for therapy choice clinical trial. J Mol Diagn 19(2):313–327

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schrader KA et al (2016) Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol 2(1):104–111

    Article  PubMed Central  PubMed  Google Scholar 

  28. Susswein LR et al (2016) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 18(8):823–832

    Article  CAS  PubMed  Google Scholar 

  29. Johns AL et al (2017) Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Med 9(1):1–9

    Article  Google Scholar 

  30. Gray SW et al (2016) Oncologists’ and cancer patients’ views on whole-exome sequencing and incidental findings: results from the CanSeq study. Genet Med 18(10):1011–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Coombs CC et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21(3):374–382. e4

    Google Scholar 

  32. Consortium APG (2017) AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov 7(8):818–831

    Google Scholar 

  33. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. AACR

    Google Scholar 

  34. Chakravarty D et al (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol 1:1–16

    Google Scholar 

  35. Li R et al (2011) 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy. Med Phys 38(5):2783–2794

    Article  PubMed  Google Scholar 

  36. King DF, King LA (1986) A brief historical note on staining by hematoxylin and eosin. Am J Dermatopathol 8(2):168

    Article  CAS  PubMed  Google Scholar 

  37. Lillie RD (1965) Hispathologic technic and practical histochemistry. MCgraw-Hill

    Google Scholar 

  38. Amos B (2000) Lessons from the history of light microscopy. Nat Cell Biol 2(8):E151–E152

    Article  CAS  PubMed  Google Scholar 

  39. Fischer AH et al (2008) Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 2008(5):p. pdb. prot4986

    Google Scholar 

  40. Ahmed AA, Abedalthagafi M (2016) Cancer diagnostics: the journey from histomorphology to molecular profiling. Oncotarget 7(36):58696

    Article  PubMed Central  PubMed  Google Scholar 

  41. Niazi MKK et al (2016) Visually meaningful histopathological features for automatic grading of prostate cancer. IEEE J Biomed Health Inform 21(4):1027–1038

    Article  PubMed  Google Scholar 

  42. Ren J et al (2015) Computer aided analysis of prostate histopathology images Gleason grading especially for Gleason score 7. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE

    Google Scholar 

  43. Kothari S et al (2013) Histological image classification using biologically interpretable shape-based features. BMC Med Imaging 13(1):1–17

    Article  Google Scholar 

  44. Wang D et al (2016) Deep learning for identifying metastatic breast cancer. arXiv:1606.05718

  45. Hou L et al (2016) Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  46. Fauzi MFA et al (2015) Classification of follicular lymphoma: the effect of computer aid on pathologists grading. BMC Med Inform Decis Mak 15(1):1–10

    Article  Google Scholar 

  47. Mobadersany P et al (2018) Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci 115(13):E2970–E2979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jakobsen NA, Hamdy FC, Bryant RJ (2016) Novel biomarkers for the detection of prostate cancer. J Clin Urol 9(2_suppl):3–10

    Google Scholar 

  49. Sharma P, Zargar-Shoshtari K, Pow-Sang JM (2016) Biomarkers for prostate cancer: present challenges and future opportunities. Future Sci OA 2(1)

    Google Scholar 

  50. Garcia CF, Swerdlow SH (2009) Best practices in contemporary diagnostic immunohistochemistry: panel approach to hematolymphoid proliferations. Arch Pathol Lab Med 133(5):756–765

    Article  PubMed  Google Scholar 

  51. Edgar MA, Rosenblum MK (2008) The differential diagnosis of central nervous system tumors: a critical examination of some recent immunohistochemical applications. Arch Pathol Lab Med 132(3):500–509

    Article  PubMed  Google Scholar 

  52. Bernardi F, Saldiva P, Mauad T (2005) Histological examination has a major impact on macroscopic necropsy diagnoses. J Clin Pathol 58(12):1261–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Roulson J-A, Benbow E, Hasleton PS (2005) Discrepancies between clinical and autopsy diagnosis and the value of post mortem histology; a meta-analysis and review. Histopathology 47(6):551–559

    Article  CAS  PubMed  Google Scholar 

  54. Mohan H, Mohan S (2011) Essential pathology for dental students. JP Medical Ltd.

    Google Scholar 

  55. Robinson JP, Roederer M (2015) Flow cytometry strikes gold. Science 350(6262):739–740

    Article  CAS  PubMed  Google Scholar 

  56. Blow N (2017) Going with the flow. Future Sci

    Google Scholar 

  57. Mazzini G, Danova M (2017) Fluorochromes for DNA staining and quantitation. Histochem Single Mol 239–259

    Google Scholar 

  58. Adan A et al (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176

    Article  CAS  PubMed  Google Scholar 

  59. Proserpio V, Lönnberg T (2016) Single-cell technologies are revolutionizing the approach to rare cells. Immunol Cell Biol 94(3):225–229

    Article  CAS  PubMed  Google Scholar 

  60. Liang S-B, Fu L-W (2017) Application of single-cell technology in cancer research. Biotechnol Adv 35(4):443–449

    Article  CAS  PubMed  Google Scholar 

  61. Jahr S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Can Res 61(4):1659–1665

    CAS  Google Scholar 

  62. Goessl C et al (2001) DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann N Y Acad Sci 945(1):51–58

    Article  CAS  PubMed  Google Scholar 

  63. Botezatu I et al (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46(8):1078–1084

    Article  CAS  PubMed  Google Scholar 

  64. Belinsky SA et al (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Can Res 62(8):2370–2377

    CAS  Google Scholar 

  65. Ahrendt SA et al (1999) Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 91(4):332–339

    Article  CAS  PubMed  Google Scholar 

  66. Evron E et al (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. The Lancet 357(9265):1335–1336

    Article  CAS  Google Scholar 

  67. Espenschied CR et al (2017) Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol 35(22):2568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mayer AT, Gambhir SS (2018) The immunoimaging toolbox. J Nucl Med 59(8):1174–1182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. de Vries EG et al (2019) Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat Rev Clin Oncol 16(4):241–255

    Article  PubMed  Google Scholar 

  70. Pantanowitz L, Preffer F, Wilbur DC (2019) Advanced imaging technology applications in cytology. Diagn Cytopathol 47(1):5–14

    Article  PubMed  Google Scholar 

  71. Qureshi SA, Bashir MU, Yaqinuddin A (2010) Utility of DNA methylation markers for diagnosing cancer. Int J Surg 8(3):194–198

    Article  PubMed  Google Scholar 

  72. Krassenstein R et al (2004) Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res 10(1):28–32

    Article  CAS  PubMed  Google Scholar 

  73. Rosas SLB et al (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Can Res 61(3):939–942

    CAS  Google Scholar 

  74. Müller HM et al (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? The Lancet 363(9417):1283–1285

    Article  Google Scholar 

  75. Wardell CP et al (2018) Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 68(5):959–969

    Article  CAS  PubMed  Google Scholar 

  76. Bass AJ et al (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202

    Article  Google Scholar 

  77. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Nishimura S et al (2021) Clinical benefit for clinical sequencing using cancer panel testing. PLoS One 16(2):e0247090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Lowstuter K et al (2017) Unexpected CDH1 mutations identified on multigene panels pose clinical management challenges. JCO Precis Oncol 1:1–12

    PubMed  Google Scholar 

  80. Rana HQ et al (2018) Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. JNCI: J Natl Cancer Inst 110(8):863–870

    Google Scholar 

  81. Roberts ME et al (2018) MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med 20(10):1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Antoniou AC et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    Article  PubMed Central  PubMed  Google Scholar 

  83. Couch FJ et al (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3(9):1190–1196

    Article  PubMed Central  PubMed  Google Scholar 

  84. Hu C et al (2018) Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 319(23):2401–2409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Kurian AW et al (2017) Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precis Oncol 1:1–12

    PubMed  Google Scholar 

  86. Palles C et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136–144

    Article  CAS  PubMed  Google Scholar 

  87. Witkowski L et al (2014) Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 46(5):438–443

    Article  CAS  PubMed  Google Scholar 

  88. Sohal DP et al (2016) Prospective clinical study of precision oncology in solid tumors. JNCI: J Natl Cancer Inst 108(3)

    Google Scholar 

  89. Meric-Bernstam F et al (2015) Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol 33(25):2753

    Article  PubMed Central  PubMed  Google Scholar 

  90. Stockley TL et al (2016) Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome medicine 8(1):1–12

    Article  Google Scholar 

  91. Surrey LF et al (2019) Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome medicine 11(1):1–14

    Article  Google Scholar 

  92. LaDuca H et al (2020) A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet Med 22(2):407–415

    Article  CAS  PubMed  Google Scholar 

  93. Frolov A et al (2002) DNA array-based method for detection of large rearrangements in the BRCA1 gene. Genes Chromosom Cancer 35(3):232–241

    Article  CAS  PubMed  Google Scholar 

  94. Lipshutz RJ et al (1999) High density synthetic oligonucleotide arrays. Nat Genet 21(1):20–24

    Article  CAS  PubMed  Google Scholar 

  95. Fodor SP et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995):767–773

    Google Scholar 

  96. Velculescu VE et al (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  97. Khan J et al (1998) Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Can Res 58(22):5009–5013

    CAS  Google Scholar 

  98. Chatterjee SK, Zetter BR (2005) Cancer biomarkers: knowing the present and predicting the future

    Google Scholar 

  99. Xiao T, Zhou W (2020) The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr 9(2):163

    Article  PubMed  Google Scholar 

  100. Hendel A et al (2014) Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 7(1):293–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Noushmehr H et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Zhang S et al (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40(19):9379–9391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. McDuff FK, Turner SD (2011) Jailbreak: oncogene-induced senescence and its evasion. Cell Signal 23(1):6–13

    Article  CAS  PubMed  Google Scholar 

  104. Sun W, Yang J (2010) Functional mechanisms for human tumor suppressors. J Cancer 1:136

    Article  PubMed Central  PubMed  Google Scholar 

  105. Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3(1):51–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Baudot A et al (2009) From cancer genomes to cancer models: bridging the gaps. EMBO Rep 10(4):359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Vazquez M, de la Torre V, Valencia A (2012) Chapter 14: cancer genome analysis. PLoS Comput Biol 8(12):e1002824

    Google Scholar 

  108. Umar A et al (2005) Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry. Proteomics 5(10):2680–2688

    Article  CAS  PubMed  Google Scholar 

  109. Perez-Moreno P et al (2012) Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res 18(9):2443–2451

    Article  CAS  PubMed  Google Scholar 

  110. Network CGAR (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519

    Article  Google Scholar 

  111. Gnirke A et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27(2):182–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Hodges E et al (2009) Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nat Protoc 4(6):960–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Sudhakar A (2009) History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 1(2):1

    Article  PubMed  Google Scholar 

  114. Chabner BA, Roberts TG (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72

    Article  CAS  PubMed  Google Scholar 

  115. Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun Arch 12(1)

    Google Scholar 

  116. Gross G et al (1989) Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. In: Transplantation proceedings

    Google Scholar 

  117. Rosenberg SA et al (1990) Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323(9):570–578

    Article  CAS  PubMed  Google Scholar 

  118. Vile R, Russell S, Lemoine N (2000) Cancer gene therapy: hard lessons and new courses. Gene Ther 7(1):2–8

    Article  CAS  PubMed  Google Scholar 

  119. Rosenbaum L (2017) Tragedy, perseverance, and chance—the story of CAR-T therapy. N Engl J Med 377(14):1313–1315

    Article  PubMed  Google Scholar 

  120. Hidai C, Kitano H (2018) Nonviral gene therapy for cancer: a review. Diseases 6(3):57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Hu C-MJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1(2):323–334

    Article  CAS  PubMed  Google Scholar 

  122. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Yang X-G et al (2019) Current advance of therapeutic agents in clinical trials potentially targeting tumor plasticity. Front Oncol 9:887

    Article  PubMed Central  PubMed  Google Scholar 

  124. Brookes P, Lawley P (1960) The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem J 77(3):478–484

    Article  CAS  PubMed  Google Scholar 

  125. Kaye SB (1998) New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer 78(3):1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Tiwari M (2012) Antimetabolites: established cancer therapy. J Cancer Res Ther 8(4)

    Google Scholar 

  127. Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? In: Seminars in oncology

    Google Scholar 

  128. Hartmann JT et al (2009) Tyrosine kinase inhibitors-a review on pharmacology, metabolism and side effects. Curr Drug Metab 10(5):470–481

    Article  CAS  PubMed  Google Scholar 

  129. Haanen J, Robert C (2015) Immune checkpoint inhibitors. Immuno-Oncology, Karger Publishers

    Google Scholar 

  130. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86

    Article  PubMed Central  PubMed  Google Scholar 

  131. Zitvogel L et al (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88

    Article  CAS  PubMed  Google Scholar 

  132. Anzick SL, Trent JM (2002) Role of genomics in identifying new targets for cancer therapy. Oncol (Williston Park) 16(5 Suppl 4):7–13

    Google Scholar 

  133. Yoo BC et al (2018) Clinical multi-omics strategies for the effective cancer management. J Proteomics 188:97–106

    Article  CAS  PubMed  Google Scholar 

  134. Du W, Elemento O (2015) Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene 34(25):3215–3225

    Article  CAS  PubMed  Google Scholar 

  135. Su F et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366(3):207–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Wang T et al (2017) Diagnostic significance of urinary long non-coding PCA3 RNA in prostate cancer. Oncotarget 8(35):58577

    Article  PubMed Central  PubMed  Google Scholar 

  137. Fang B et al (2015) Predictive biomarkers in precision medicine and drug development against lung cancer. Chin J Cancer 34(3):1–15

    Article  Google Scholar 

  138. Shiraishi H et al (2017) Actinin-4 protein overexpression as a predictive biomarker in adjuvant chemotherapy for resected lung adenocarcinoma. Biomark Med 11(9):721–731

    Article  CAS  PubMed  Google Scholar 

  139. Pettini F et al (2021) Multi-omics model applied to cancer genetics. Int J Mol Sci 22(11):5751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  141. Olivier M et al (2019) The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci 20(19):4781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Guha T, Malkin D (2017) Inherited TP53 mutations and the Li–Fraumeni syndrome. Cold Spring Harb Perspect Med 7(4):a026187

    Article  PubMed Central  PubMed  Google Scholar 

  143. Kurian AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22(1):72–78

    Article  PubMed  Google Scholar 

  144. Nelson HD et al (2005) Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: systematic evidence review for the US Preventive Services Task Force. Ann Intern Med 143(5):362–379

    Article  CAS  PubMed  Google Scholar 

  145. Ellsworth RE et al (2010) Breast cancer in the personal genomics era. Curr Genomics 11(3):146–161

    Google Scholar 

  146. Chang K et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120

    Article  CAS  Google Scholar 

  147. Lee H, Ross JS (2017) The potential role of comprehensive genomic profiling to guide targeted therapy for patients with biliary cancer. Ther Adv Gastroenterol 10(6):507–520

    Article  CAS  Google Scholar 

  148. Johnson B, Cooke L, Mahadevan D (2017) Next generation sequencing identifies ‘interactome’signatures in relapsed and refractory metastatic colorectal cancer. J Gastrointest Oncol 8(1):20

    Article  PubMed Central  PubMed  Google Scholar 

  149. Valenti F et al (2021) Precision medicine and melanoma: multi-omics approaches to monitoring the immunotherapy response. Int J Mol Sci 22(8):3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Stark MS et al (2012) Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet 44(2):165–169

    Article  CAS  Google Scholar 

  151. Irvine M et al (2018) Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma. Oncogenesis 7(9):1–11

    Article  CAS  Google Scholar 

  152. Bazzichetto C et al (2019) PTEN as a prognostic/predictive biomarker in cancer: an unfulfilled promise? Cancers 11(4):435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Beadling C et al (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14(21):6821–6828

    Article  CAS  PubMed  Google Scholar 

  154. Nissan MH et al (2014) Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Can Res 74(8):2340–2350

    Article  CAS  Google Scholar 

  155. Jiang J et al (2020) Integrated genomic analysis identifies a genetic mutation model predicting response to immune checkpoint inhibitors in melanoma. Cancer Med 9(22):8498–8518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Buder-Bakhaya K, Hassel JC (2018) Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—a review from the melanoma perspective and beyond. Front Immunol 9:1474

    Article  PubMed Central  PubMed  Google Scholar 

  157. Rakha EA, Reis-Filho JS, Ellis IO (2010) Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat 120(2):293–308

    Article  CAS  PubMed  Google Scholar 

  158. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948

    Article  CAS  PubMed  Google Scholar 

  159. Lal S et al (2017) Molecular signatures in breast cancer. Methods 131:135–146

    Article  CAS  PubMed  Google Scholar 

  160. Zheng C et al (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7):1342–1356. e16

    Google Scholar 

  161. Chung W et al (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8(1):1–12

    Article  Google Scholar 

  162. Liu X, Meltzer SJ (2017) Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol 3(3):348–358

    Article  PubMed Central  PubMed  Google Scholar 

  163. Auslander N et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24(10):1545–1549

    Article  CAS  PubMed Central  Google Scholar 

  164. Lee JH et al (2020) Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition. Nat Commun 11(1):1–12

    Google Scholar 

  165. Li X et al (2017) Whole-exome sequencing predicted cancer epitope trees of 23 early cervical cancers in Chinese women. Cancer Med 6(1):207–219

    Article  CAS  PubMed  Google Scholar 

  166. Majewski J, Pastinen T (2011) The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet 27(2):72–79

    Article  CAS  PubMed  Google Scholar 

  167. Mancuso N et al (2017) Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet 100(3):473–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Gao G et al (2017) Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen receptor-negative breast cancer. PLoS Genet 13(9):e1006727

    Article  PubMed Central  PubMed  Google Scholar 

  169. Hoffman JD et al (2017) Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with breast cancer risk. PLoS Genet 13(3):e1006690

    Article  PubMed Central  PubMed  Google Scholar 

  170. Liu D et al (2020) A transcriptome-wide association study identifies candidate susceptibility genes for pancreatic cancer risk. Can Res 80(20):4346–4354

    Article  CAS  Google Scholar 

  171. Ferreira MA et al (2019) Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun 10(1):1–18

    Article  Google Scholar 

  172. Mosig RA et al (2012) IGFBP-4 tumor and serum levels are increased across all stages of epithelial ovarian cancer. J Ovarian Res 5(1):1–8

    Article  Google Scholar 

  173. Xing S et al (2017) Development and validation of a serum biomarker panel for the detection of esophageal squamous cell carcinoma through RNA transcriptome sequencing. J Cancer 8(12):2346

    Article  PubMed Central  PubMed  Google Scholar 

  174. Supplitt S et al (2021) Current achievements and applications of transcriptomics in personalized cancer medicine. Int J Mol Sci 22(3):1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Lu Q et al (2017) Potential lncRNA diagnostic biomarkers for early gastric cancer. Mol Med Rep 16(6):9545–9552

    Article  CAS  PubMed  Google Scholar 

  176. Jerevall P-L et al (2011) Prognostic utility of HOXB13: IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer 104(11):1762–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Fisher B et al (2004) Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. The Lancet 364(9437):858–868

    Article  CAS  Google Scholar 

  178. Ma X-J et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616

    Article  CAS  PubMed  Google Scholar 

  179. Syed YY (2020) Oncotype DX breast recurrence score®: a review of its use in early-stage breast cancer. Mol Diagn Ther 24(5):621–632

    Article  PubMed  Google Scholar 

  180. Hannouf MB et al (2019) A review of gene expression profiling in early stage ER+/HER2-breast cancer with a focus on the PAM50 Risk of Recurrence Assay. EMJ Oncol 7(Suppl 1):2–13

    Article  Google Scholar 

  181. Yanovich G et al (2018) Clinical proteomics of breast cancer reveals a novel layer of breast cancer classification. Can Res 78(20):6001–6010

    Article  CAS  Google Scholar 

  182. Cruz IN et al (2017) Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics 14(1):35–51

    Article  CAS  PubMed  Google Scholar 

  183. Ali M et al (2018) Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Bioinformatics 34(8):1353–1362

    Article  CAS  PubMed  Google Scholar 

  184. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  185. Shruthi BS, Vinodhkumar P (2016) Proteomics: a new perspective for cancer. Adv Biomed Res 5

    Google Scholar 

  186. Chakraborty S et al (2018) Onco-multi-OMICS approach: a new frontier in cancer research. BioMed Res Int 2018

    Google Scholar 

  187. Zeidan BA et al (2015) Clinical proteomics and breast cancer. Surg 13(5):271–278

    Google Scholar 

  188. Palacios J et al (2008) The molecular pathology of hereditary breast cancer. Pathobiology 75(2):85–94

    Article  CAS  PubMed  Google Scholar 

  189. Bhargava R et al (2008) CK5 is more sensitive than CK5/6 in identifying the “basal-like” phenotype of breast carcinoma. Am J Clin Pathol 130(5):724–730

    Article  CAS  PubMed  Google Scholar 

  190. Qin X-J, Ling BX (2012) Proteomic studies in breast cancer. Oncol Lett 3(4):735–743

    CAS  PubMed Central  PubMed  Google Scholar 

  191. He W et al (2013) Serum soluble CD14 is a potential prognostic indicator of recurrence of human breast invasive ductal carcinoma with Her2-enriched subtype. PLoS One 8(9):e75366

    Article  CAS  PubMed  Google Scholar 

  192. Moyano JV et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Investig 116(1):261–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Hudelist G et al (2006) Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics 6(6):1989–2002

    Article  CAS  PubMed  Google Scholar 

  194. Fink-Retter A et al (2009) Proteomics in mammary cancer research. Eur J Gynaecol Oncol 30(6):635–639

    CAS  PubMed  Google Scholar 

  195. Schulz DM et al (2009) Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry. J Proteome Res 8(7):3430–3438

    Article  CAS  PubMed  Google Scholar 

  196. Korkola J, Gray JW (2010) Breast cancer genomes—form and function. Curr Opin Genet Dev 20(1):4–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Sanders ME et al (2008) Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS. J Proteome Res 7(4):1500–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Harel M et al (2019) Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179(1):236–250. e18

    Google Scholar 

  199. Babačić H et al (2020) In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma. J Immunother Cancer 8(1)

    Google Scholar 

  200. Lim SY et al (2019) Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1–based immunotherapy. Clin Cancer Res 25(5):1557–1563

    Article  CAS  PubMed  Google Scholar 

  201. Jerzak KJ et al (2017) Targeted metabolomics in colorectal cancer: a strategic approach using standardized laboratory tests of the blood and urine. Hypoxia 5:61

    Article  PubMed Central  Google Scholar 

  202. Di Poto C et al (2017) Metabolomic characterization of hepatocellular carcinoma in patients with liver cirrhosis for biomarker discovery. Cancer Epidemiol Prev Biomark 26(5):675–683

    Article  Google Scholar 

  203. Agarwala SS et al (2009) LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J Cancer 45(10):1807–1814

    Article  Google Scholar 

  204. Van Wilpe S et al (2020) Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology 9(1):1731942

    Article  PubMed Central  PubMed  Google Scholar 

  205. Schouwenburg MG et al (2019) Switching to immune checkpoint inhibitors upon response to targeted therapy; the road to long-term survival in advanced melanoma patients with highly elevated serum LDH? Cancers 11(12):1940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Kruijff S et al (2012) Use of S-100B to evaluate therapy effects during bevacizumab induction treatment in AJCC stage III melanoma. Ann Surg Oncol 19(2):620–626

    Article  CAS  PubMed  Google Scholar 

  207. Wagner NB et al (2018) S100B and LDH as early prognostic markers for response and overall survival in melanoma patients treated with anti-PD-1 or combined anti-PD-1 plus anti-CTLA-4 antibodies. Br J Cancer 119(3):339–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Zhang Y et al (2016) Serum unsaturated free fatty acids: a potential biomarker panel for early-stage detection of colorectal cancer. J Cancer 7(4):477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Giskeødegård GF et al (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4):e62375

    Article  PubMed Central  PubMed  Google Scholar 

  210. Mayers JR et al (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20(10):1193–1198

    Article  CAS  PubMed  Google Scholar 

  211. Giesbertz P, Daniel H (2016) Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care 19(1):48–54

    Article  CAS  PubMed  Google Scholar 

  212. Ferguson JF, Wang TJ (2016) Branched-chain amino acids and cardiovascular disease: does diet matter? Oxford University Press

    Google Scholar 

  213. Gowda GN, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. Mass Spectrom Metab 3–12

    Google Scholar 

  214. Tyanova S et al (2016) Proteomic maps of breast cancer subtypes. Nat Commun 7(1):1–11

    Article  Google Scholar 

  215. Zhang B et al (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513(7518):382–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Mertins P et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Zhang H et al (2016) Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166(3):755–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Hosseinahli N et al (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 233(8):5574–5588

    Article  CAS  PubMed  Google Scholar 

  219. Mollaei H, Safaralizadeh R, Rostami Z (2019) MicroRNA replacement therapy in cancer. J Cell Physiol 234(8):12369–12384

    Article  CAS  PubMed  Google Scholar 

  220. Seto AG et al (2018) Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 183(3):428–444

    Article  CAS  PubMed  Google Scholar 

  221. Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 5(4):179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabba Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehmood, S., Aslam, S., Dilshad, E., Ismail, H., Khan, A.N. (2023). Transforming Diagnosis and Therapeutics Using Cancer Genomics. In: Qazi, A.S., Tariq, K. (eds) Therapeutic Approaches in Cancer Treatment. Cancer Treatment and Research, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-031-27156-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27156-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27155-7

  • Online ISBN: 978-3-031-27156-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics