Skip to main content

Students’ Processing Types in a Computer-Based Learning Environment for Mathematical Modelling

  • Chapter
  • First Online:
Advancing and Consolidating Mathematical Modelling

Abstract

Modelling processes can be supported, enriched and made more authentic using ICT which can be combined in a Computer-Based Learning Environment (CBLE). However, from a theoretical perspective, it can be anticipated that modelling within a CBLE can also pose difficulties or hurdles for learners. A key aspect of this process is self-regulated learning. Hence, there is an empirical interest in analysing modelling processes within a CBLE and classifying them by using computer-generated process data. Based on an exploratory study, it is found that five different processing types can be identified from a sample of two classes from secondary school that were asked to work independently with the CBLE for two weeks during distance learning in 2020. It is shown that the clusters can be characterised mainly by variables on the use of supportive elements which can be linked to self-regulated learning skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonenko, P. D., Toy, S., & Niederhauser, D. S. (2012). Using cluster analysis for data mining in educational technology research. Educational Technology Research and Development, 60(3), 383–398. https://doi.org/10.1007/s11423-012-9235-8

    Article  Google Scholar 

  • Artigue, M. (2000). Instrumentation issues and the integration of computer technologies into secondary mathematics teaching. Proceedings of the Annual Meeting of the GDM, 11. http://webdoc.sub.gwdg.de/ebook/e/gdm/2000

  • Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40(4), 199–209. https://doi.org/10.1207/s15326985ep4004_2

    Article  Google Scholar 

  • Baker, R. S. J. D., D’Mello, S. K., Rodrigo, Ma. M. T., & Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68(4), 223–241. https://doi.org/10.1016/j.ijhcs.2009.12.003

  • Beckschulte, C. (2019). Mathematisches Modellieren mit Lösungsplan: Eine empirische Untersuchung zur Entwicklung von Modellierungskompetenzen. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-27832-8

  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58.

    Google Scholar 

  • Borba, M. C., de Souza Chiari, A. S., & de Almeida, H. R. F. L. (2018). Interactions in virtual learning environments: New roles for digital technology. Educational Studies in Mathematics, 98(3), 269–286. https://doi.org/10.1007/s10649-018-9812-9

    Article  Google Scholar 

  • Carreira, S. (2015). Mathematical problem solving beyond school: Digital tools and students’ mathematical representations. In S. J. Cho (Ed.), Selected regular lectures from the 12th international congress on mathematical education (pp. 93–113). Springer. https://doi.org/10.1007/978-3-319-17187-6_6

  • de Corte, E., Verschaffel, L., & op ’t Eynde, P. (2000). Self-regulation. A characteristic and a goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (Vol. 3, pp. 687–726). Academic Press.

    Google Scholar 

  • Drijvers, P., & Ferrara, F. (2018). Instruments and the body. In E. Bergqvist, M. Ă–sterholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd conference of the international group for the psychology of mathematics education (Vol. 1, pp. 193–194). PME.

    Google Scholar 

  • Drijvers, P., Kieran, C., & Mariotti, M.-A. (2010). Integrating technology into mathematics education: Theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the Terrain. The 17th ICMI study (pp. 89–132). Springer Science+Business.

    Google Scholar 

  • Efklides, A., Schwartz, B. L., & Brown, V. (2017). Motivation and affect in self-regulated learning. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 64–82). Routledge. https://doi.org/10.4324/9781315697048-5

  • Geraniou, E., & Jankvist, U. T. (2019). Towards a definition of “mathematical digital competency.” Educational Studies in Mathematics, 102(1), 29–45. https://doi.org/10.1007/s10649-019-09893-8

    Article  Google Scholar 

  • Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modelling with digital tools—A quantitative study on mathematising with dynamic geometry software. ZDM—Mathematics Education, 50, 233–244. https://doi.org/10.1007/s11858-018-0924-6

    Article  Google Scholar 

  • Greene, J. A., Moos, D. C., & Azevedo, R. (2011). Self-regulation of learning with computer-based learning environments. New Directions for Teaching and Learning, 2011(126), 107–115. https://doi.org/10.1002/tl.449

    Article  Google Scholar 

  • Greiff, S., Niepel, C., Scherer, R., & Martin, R. (2016). Understanding students’ performance in a computer-based assessment of complex problem solving: An analysis of behavioral data from computer-generated log files. Computers in Human Behavior, 61, 36–46.

    Article  Google Scholar 

  • Hankeln, C. (2019). Mathematischs Modellieren mit dynamischer Geometire-Software. Ergebnisse einer Interventionsstudie. Springer Fachmedien.

    Google Scholar 

  • Isaacs, W., & Senge, P. (1992). Overcoming limits to learning in computer-based learning environments. European Journal of Operational Research, 59, 183–196.

    Article  Google Scholar 

  • Kroehne, U. (2020). Analysis of log data using finite-state machines. http://www.logfsm.com

  • Lichti, M., & Roth, J. (2018). How to foster functional thinking in learning environments using computer-based simulations or real materials. Journal for STEM Education Research, 1(1–2), 148–172. https://doi.org/10.1007/s41979-018-0007-1

    Article  Google Scholar 

  • Milligan, G. W. (1989). A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6(1), 53–71. https://doi.org/10.1007/BF01908588

    Article  Google Scholar 

  • Molina-Toro, J., RendĂłn-Mesa, P., & Villa-Ochoa, J. (2019). Research trends in digital technologies and modeling in mathematics education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8). https://doi.org/10.29333/ejmste/108438

  • Monaghan, J., & Trouche, L. (2016). Introduction to the book. In J. M. Borwein, J. Monaghan, & L. Trouche (Eds.), Tools and mathematics (Vol. 110, pp. 3–12). Springer. https://doi.org/10.1007/978-3-319-02396-0

  • Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53, 801–813.

    Article  Google Scholar 

  • Rellensmann, J., Schukajlow, S., & Leopold, C. (2017). Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance. Educational Studies in Mathematics, 95(1), 53–78. https://doi.org/10.1007/s10649-016-9736-1

  • Rölke, H. (2012). The ItemBuilder. A graphical authoring system for complex item development. In T. Bastiaens & G. Marks (Eds.), Proceedings of world conference on E-Learning in corporate, government, healthcare, and higher education 2012 (pp. 344–353). AACE. https://www.learntechlib.org/p/41614/

  • Skutella, K., & Eilerts, K. (2018). Erfolgreich das Tor hĂĽten – Ein Modellierungskontext fĂĽr verschiedene Altersstufen. In K. Eilerts & K. Skutella (Eds.), Neue Materialien fĂĽr einen realitätsbezogenen Mathematikunterricht 5: Ein ISTRON-Band fĂĽr die Grundschule. Springer Spektrum. https://doi.org/10.1007/978-3-658-21042-7_5

  • Veenman, M. V. J. (2013). Assessing metacognitive skills in computerized learning environments. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (Vol. 28, pp. 157–168). Springer. https://doi.org/10.1007/978-1-4419-5546-3_11

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101. https://doi.org/10.1007/BF03172796

    Article  Google Scholar 

  • Winne, P. H. (1997). Experimenting to bootstrap self-regulated learning. Journal of Educational Psychology, 89(3), 397–410. https://doi.org/10.1037//0022-0663.89.3.397

    Article  Google Scholar 

  • Zeidner, M., Boekaerts, M., & Pintrich, P. R. (2000). Self-regulation. Directions and challenges for future research. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (Vol. 3, pp. 749–768). Academic Press.

    Google Scholar 

  • Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207/s15326985ep2501_2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Frenken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frenken, L. (2023). Students’ Processing Types in a Computer-Based Learning Environment for Mathematical Modelling. In: Greefrath, G., Carreira, S., Stillman, G.A. (eds) Advancing and Consolidating Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-27115-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27115-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27114-4

  • Online ISBN: 978-3-031-27115-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics