Skip to main content

VERGE in VBS 2023

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Abstract

This paper describes VERGE, an interactive video retrieval system for browsing a collection of images from videos and searching for specific content. The system utilizes many retrieval techniques as well as fusion and reranking capabilities. A Web Application is also part of VERGE, where a user can create queries, view the top results and submit the appropriate data, all in a user-friendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Caba Heilbron, F., et al.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of IEEE CVPR 2015, pp. 961–970 (2015)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  4. Faghri, F., Fleet, D.J., et al.: VSE++: improving visual-semantic embeddings with hard negatives. In: Proceedings of BMVC 2018 (2018)

    Google Scholar 

  5. Galanopoulos, D., Mezaris, V.: Attention mechanisms, signal encodings and fusion strategies for improved ad-hoc video search with dual encoding networks. In: Proceedings of ACM ICMR 2020 (2020)

    Google Scholar 

  6. Galanopoulos, D., Mezaris, V.: Are all combinations equal? Combining textual and visual features with multiple space learning for text-based video retrieval. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13804, pp. 627–643. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25069-9_40

  7. Guangnan, Y., Yitong, L., et al.: Eventnet: a large scale structured concept library for complex event detection in video. In: Proceedings of ACM MM 2015 (2015)

    Google Scholar 

  8. Hara, K., et al.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: Proceedings of IEEE CVPR 2018 (2018)

    Google Scholar 

  9. Heller, S., Gsteiger, V., Bailer, W., et al.: Interactive video retrieval evaluation at a distance: comparing sixteen interactive video search systems in a remote setting at the 10th video browser showdown. IJMIR 11(1), 1–18 (2022)

    Google Scholar 

  10. Jegou, H., et al.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

    Article  Google Scholar 

  11. Li, Y., Song, Y., Cao, L., Tetreault, J., et al.: TGIF: a new dataset and benchmark on animated gif description. In: Proceedings of IEEE CVPR 2016 (2016)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

    Chapter  Google Scholar 

  14. Markatopoulou, F., Moumtzidou, A., Galanopoulos, D., et al.: ITI-CERTH participation in TRECVID 2017. In: Proceedings of TRECVID 2017 Workshop, USA (2017)

    Google Scholar 

  15. Pittaras, N., Markatopoulou, F., Mezaris, V., Patras, I.: Comparison of fine-tuning and extension strategies for deep convolutional neural networks. In: Amsaleg, L., Guðmundsson, G.Þ, Gurrin, C., Jónsson, B.Þ, Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 102–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51811-4_9

    Chapter  Google Scholar 

  16. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  17. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  18. Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    Chapter  Google Scholar 

  19. Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., et al.: CrowdHuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)

  20. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  21. Wang, X., et al.: Vatex: a large-scale, high-quality multilingual dataset for video-and-language research. In: Proceedings of IEEE/CVF ICCV 2019, pp. 4581–4591 (2019)

    Google Scholar 

  22. Xu, J., Mei, T., et al.: MSR-VTT: a large video description dataset for bridging video and language. In: Proceedings of IEEE CVPR 2016, pp. 5288–5296 (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU’s Horizon 2020 research and innovation programme under grant agreements H2020-101004152 CALLISTO, H2020-833464 CREST, H2020-101070250 XRECO, and H2020 - 101021866 CRiTERIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios Andreadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pantelidis, N. et al. (2023). VERGE in VBS 2023. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics