Skip to main content

Metal Phosphates/Phosphonates for Supercapacitor Applications

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nowadays, phosphorus compounds, like metal phosphates and phosphonates have attained considerable attention as electrode materials for energy storage devices i.e., supercapacitors (SCs) and solar cells, etc., because of their high porosity, enlarged surface area, suitable pore size, well-regulated structural stability, excellent electrochemical reversibility, and rich active sites. Porous metal phosphates/phosphonates compounds are the most explored and investigated trendsetter electrode materials owing to their non-toxic, light atom weight, rich covalent states, environmental-friendly, and low-cost nature. These electrode schemes show much good performances (i.e., high specific capacitance, extraordinary energy density, long charge–discharge cycle life, and improved power density). Herein, we have focused on the topical progress and development of metal phosphates/phosphonates by concentrating on their beneficial utilization and prospective applications for the next generation as a novel class of electrode materials in SCs. Methodologies and the modified fabrication techniques to bring out the best merits of synthesized metal phosphates/phosphonates are focused, along with the technical and systematic perceptions are elaborated, as such analysis sturdily influences the electro-chemical energy storing abilities of the devices. Specific considerations have been put to such hybrid-kind of materials, where robust synergistic properties occur. Finally, the forthcoming perceptions and challenges for the metal phosphates/phosphonates are projected and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moshiri, S.: Consumer responses to gasoline price and non-price policies. Energy Policy 137, 111078 (2020)

    Article  Google Scholar 

  2. Sen, D., Günay, E., Murat Tunç, K.M.: Forecasting annual natural gas consumption using socio-economic indicators for making future policies. Energy 173, 1106–1118 (2019)

    Google Scholar 

  3. Hadjipaschalis, I., Poullikkas, A., Efthimiou, V.: Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13(6–7), 1513–1522 (2009)

    Article  Google Scholar 

  4. Colbertaldo, P., Agustin, S.B., Campanari, S., Brouwer, J.: Impact of hydrogen energy storage on California electric power system: towards 100% renewable electricity. Int. J. Hydrog. Energy 44(19), 9558–9576 (2019)

    Google Scholar 

  5. Lian, J., Zhang, Y., Ma, C., Yang, Y., Chaima, E.: A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers. Manage. 199, 112027 (2019)

    Article  Google Scholar 

  6. Emmett, R.K., Roberts, M.E.: Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage. J. Power Sour. 506, 230087 (2021)

    Article  CAS  Google Scholar 

  7. Islam, Md. S., Shudo, Y., Hayami, S.: Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: state-of-art and prospect. Bull. Chem. Soc. Jpn. 95(1), 1–25 (2022)

    Google Scholar 

  8. Chen, D., Jiang, K., Huang, T., Shen, G.: Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 32(5), 1901806 (2020)

    Google Scholar 

  9. Chen, B., Linli, Xu., Xie, Z., Wong, W.-Y.: Supercapacitor electrodes based on metal-organic compounds from the first transition metal series. EcoMat 3(3), e12106 (2021)

    Article  CAS  Google Scholar 

  10. Wei, Q., Fu, Y., Zhang, G., Yang, D., Meng, G., Sun, S.: Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy 55, 234–259 (2019)

    Google Scholar 

  11. Arfeen, Z.A., Abdullah, Md.P., Hassan, R., Othman, B.M., Siddique, A., Rehman, A.U., Sheikh, U.U.: Energy storage usages: engineering reactions, economic-technological values for electric vehicles—a technological outlook. Intern. Trans. Electr. Energy Syst. 30(9), e12422 (2020)

    Article  Google Scholar 

  12. Yan, J., Li, S., Lan, B., Wu, Y., Lee, P.S.: Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 30(2), 1902564 (2020)

    Google Scholar 

  13. Shinde, P.A., Jun, S.C.: Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 13(1), 11–38 (2020)

    Google Scholar 

  14. Jiya, I.N., Gurusinghe, N., Gouws, R.: Electrical circuit modelling of double layer capacitors for power electronics and energy storage applications: a review. Electronics 7(11), 268 (2018)

    Article  CAS  Google Scholar 

  15. Yamazaki, S., Ito, T., Murakumo, Y., Naitou, M., Shimooka, T., Yamagata, M., Ishikawa, M.: Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes. J. Power Sources 326, 580–586 (2016)

    Article  CAS  Google Scholar 

  16. Jabeen, N., Hussain, A., Xia, Q, Sun, S., Zhu, J., Xia, H.: High‐performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017)

    Google Scholar 

  17. Jabeen, N., Xia, Q., Savilov, S.V., Aldoshin, S.M., Yan, Yu., Xia, H.: Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 8(49), 33732–33740 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Xu, B., Zhang, H., Mei, H., Sun, D.: Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 420, 213438 (2020)

    Article  CAS  Google Scholar 

  19. Jabeen, N., Xia, Q., Yang, M., Xia, H.: Unique core–shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes. ACS Appl. Mater. Interfaces 8(9), 6093–6100 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. Qiu, M., Sun, P., Shen, L., Wang, K., Song, S., Yu, X., Tan, S., Zhao, C., Mai, W.: WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 4(19), 7266–7273 (2016)

    Google Scholar 

  21. Gu, Y.-J., Wen, W., Zheng, S., Jin-Ming, Wu.: Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe2O3 nanoplates on carbon cloth via a versatile molten salt method. Mater. Chem. Front. 4(9), 2744–2753 (2020)

    Article  CAS  Google Scholar 

  22. Li, X., Elshahawy, A.M., Guan, C., Wang, J.: Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)

    Article  Google Scholar 

  23. Zhao, H., Yuan, Z.-Y.: Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. Chemsuschem 14(1), 130–149 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. Chen, L., Ren, J.-T., Wang, Y.-S., Tian, W.-W., Gao, L.-J., Yuan, Z.-Y.: Organic–inorganic cobalt-phosphonate-derived hollow cobalt phosphate spherical hybrids for highly efficient oxygen evolution. ACS Sustain. Chem. Eng. 7(15), 13559–13568 (2019)

    Article  CAS  Google Scholar 

  25. Huang, Z.-Q., Lu, W.-X., Wang, B., Chen, W.-J., Xie, J.-L., Pan, D.-S., Zhou, L.-L., Song, J.-L.: A mesoporous C, N–Co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catal. Sci. Technol. 9(17), 4718–4724 (2019)

    Google Scholar 

  26. Terban, M.W., Shi, C., Silbernagel, R., Clearfield, A., Billinge, S.J.L.: Local environment of terbium (III) ions in layered nanocrystalline zirconium (IV) phosphonate–phosphate ion exchange materials. Inorgan. Chem. 56(15), 8837–8846 (2017)

    Google Scholar 

  27. Iqbal, M.F., Ashiq, M.N., Zhang, M.: Design of metals sulfides with carbon materials for supercapacitor applications: a review. Energy Technol. 9(4), 2000987 (2021)

    Google Scholar 

  28. Yin, H., Xian, Y., Zhang, Y., Li, W., Fan, J.: Structurally stabilizing and environment friendly triggers: double-metallic lead-free perovskites. Sol. Rrl 3(9), 1900148 (2019)

    Article  Google Scholar 

  29. Yu, D., Zhai, S., Jiang, W., Goh, K., Wei, L., Chen, X., Jiang, R., Chen, Y.: Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv. Mater. 27(33), 4895–4901 (2015)

    Google Scholar 

  30. Wang, Y., Xueliang, Wu., Han, Y., Li, T.: Flexible supercapacitor: overview and outlooks. J. Energy Storage 42, 103053 (2021)

    Article  Google Scholar 

  31. Wei, Y.-S., Zhang, M., Zou, R., Qiang, Xu.: Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 120(21), 12089–12174 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. Pramanik, M., Salunkhe, R.R., Imura, M., Yamauchi, Y.: Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces 8(15), 9790–9797 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Lv, X.-W., Weng, C.-C., Zhu, Y.-P., Yuan, Z.-Y.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small 17(22), 2005304 (2021)

    Article  CAS  Google Scholar 

  34. Mirghni, A.A., Oyedotun, K.O., Mahmoud, B.A., Bello, A., Ray, S.C., Manyala, N.: Nickel-cobalt phosphate/graphene foam as enhanced electrode for hybrid supercapacitor. Compos. Part B Eng. 174, 106953 (2019)

    Google Scholar 

  35. Pang, H., Yan, Z., Wang, W., Chen, J., Zhang, J., Zheng, H.: Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4(19), 5946–5953 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, S., Gao, H., Zhou, J.: Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors. J. Alloy. Compd. 746, 549–556 (2018)

    Article  CAS  Google Scholar 

  37. Wang, S., Pang, H., Zhao, S., Shao, W., Zhang, N., Zhang, J., Chen, J., Li, S.: NH4CoPO4·H2O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. RSC Adv. 4(1), 340–347 (2014)

    Article  CAS  Google Scholar 

  38. Zhao, Y., Chen, Z., Xiong, D.-B., Qiao, Y., Tang, Y., Gao, F.: Hybridized phosphate with ultrathin nanoslices and single crystal microplatelets for high performance supercapacitors. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  39. Wang, X., Yan, Z., Pang, H., Wang, W., Li, G., Ma, Y., Zhang, H., Li, X., Chen, J.: NH4CoPO4·H2O microflowers and porous Co2P2O7 microflowers: effective electrochemical supercapacitor behavior in different alkaline electrolytes. Int. J. Electrochem. Sci 8(3), 3768–3785 (2013)

    CAS  Google Scholar 

  40. Li, Q., Li, Y., Peng, H., Cui, X., Zhou, M., Feng, K., Xiao, P.: Layered NH4CoxNi1−xPO4·H2O (0≦ x≦ 1) nanostructures finely tuned by Co/Ni molar ratios for asymmetric supercapacitor electrodes. J. Mater. Sci. 51(22), 9946–9957 (2016)

    Article  CAS  Google Scholar 

  41. Li, Q., Li, X., Jiawei, Gu., Li, Y., Tian, Z., Pang, H.: Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 14(5), 1405–1412 (2021)

    Article  CAS  Google Scholar 

  42. Pang, H., Yan, Z., Ma, Y., Li, G., Chen, J., Zhang, J., Weimin, Du., Li, S.: Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. J. Solid State Electrochem. 17(5), 1383–1391 (2013)

    Article  CAS  Google Scholar 

  43. Ma, L., Li, Na., Long, C., Dong, B., Fang, D., Liu, Z., Li, Y.Z.X., Fan, J., Chen, S., Zhang, S., Zhi, C.: Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Func. Mater. 29(46), 1906142 (2019)

    Article  CAS  Google Scholar 

  44. Mirghni, A.A., Momodu, D., Oyedotun, K.O., Dangbegnon, J.K., Manyala, N.: Electrochemical analysis of Co3(PO4)2 4H2O/graphene foam composite for enhanced capacity and long cycle life hybrid asymmetric capacitors. Electrochim. Acta 283, 374–384 (2018)

    Article  CAS  Google Scholar 

  45. Li, H., Hongwen, Yu., Zhai, J., Sun, L., Yang, H., Xie, S.: Self-assembled 3D cobalt phosphate octahydrate architecture for supercapacitor electrodes. Mater. Lett. 152, 25–28 (2015)

    Article  Google Scholar 

  46. Pang, H., Zhang, Y., Lai, W.-Y., Zheng, Hu., Huang, W.: Lamellar K2Co3(P2O7)2 2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy 15, 303–312 (2015)

    Article  CAS  Google Scholar 

  47. Wei, C., Cheng, C., Zhou, B., Yuan, X., Cui, T., Wang, S., Zheng, M., Pang, H.: Hierarchically porous NaCoPO4–Co3O4 hollow microspheres for flexible asymmetric solid-state supercapacitors. Part. Part. Syst. Charact. 32(8), 831–839 (2015)

    Article  CAS  Google Scholar 

  48. Omar, F.S., Numan, A., Duraisamy, N., Bashir, S., Ramesh, K., Ramesh, S.J.R.A.: Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv. 6(80), 76298–76306 (2016)

    Google Scholar 

  49. Minakshi, M., Mitchell, D., Jones, R., Alenazey, F., Watcharatharapong, T., Chakraborty, S., Ahuja, R.: Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices. Nanoscale 8(21), 11291–11305 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Liu, M., Li, J., Han, W., Kang, L.: Simple synthesis of novel phosphate electrode materials with unique microstructure and enhanced supercapacitive properties. J. Energy Chem. 25(4), 601–608 (2016)

    Article  Google Scholar 

  51. Gao, Y., Zhao, J., Run, Z., Zhang, G., Pang, H.: Microporous Ni11(HPO3)8(OH)6 nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors. Dalton Trans. 43(45), 17000–17005 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. Wei, C., Cheng, C., Wang, S., Xu, Y., Wang, J., Pang, H.: Sodium‐doped mesoporous Ni2P2O7 hexagonal tablets for high‐performance flexible all‐solid‐state hybrid supercapacitors. Chem. Asian J. 10(8), 1731–1737 (2015)

    Google Scholar 

  53. Bendi, R., Kumar, V., Bhavanasi, V., Parida, K., Lee, P.S.: Metal organic framework‐derived metal phosphates as electrode materials for supercapacitors. Adv. Energy Mater. 6(3), 1501833 (2016)

    Google Scholar 

  54. Tang, Y., Liu, Z., Guo, W., Chen, T., Qiao, Y., Shichun, Mu., Zhao, Y., Gao, F.: Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016)

    Article  CAS  Google Scholar 

  55. Chen, C., Zhang, N., He, Y., Liang, Bo., Ma, R., Liu, X.: Controllable fabrication of amorphous Co–Ni pyrophosphates for tuning electrochemical performance in supercapacitors. ACS Appl. Mater. Interfaces 8(35), 23114–23121 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. Li, B., Peng, Gu., Feng, Y., Zhang, G., Huang, K., Xue, H., Pang, H.: Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Func. Mater. 27(12), 1605784 (2017)

    Article  Google Scholar 

  57. Liu, M.-C., Li, J.-J., Hu, Y.-X., Yang, Q.-Q., Kang, L.: Design and fabrication of Ni3P2O8-Co3P2O8·8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)

    Google Scholar 

  58. Mirghni, A.A., Madito, M.J., Masikhwa, T.M., Oyedotun, K.O., Bello, A., Manyala, N.: Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017)

    Google Scholar 

  59. Mei, P., Pramanik, M., Young, C., Huang, Z., Hossain, Md.S.A., Sugahara, Y., Yamauchi, Y (2017) Synthesis of mesostructured manganese phosphonate and its promising energy storage application. J. Mater. Chem. A 5(44), 23259–23266 (2017)

    Google Scholar 

  60. Zhang, Fan, Yuanyuan Bao, Shuangshuang Ma, Lu Liu, and Xin Shi. Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrodes. J. Mater. Chem. A 5(16), 7474–7481 (2017)

    Google Scholar 

  61. Donnadio, A., Nocchetti, M., Costantino, F., Taddei, M., Casciola, M.: Fábio da Silva Lisboa, and Riccardo Vivani. A layered mixed zirconium phosphate/phosphonate with exposed carboxylic and phosphonic groups: X-ray powder structure and proton conductivity properties. Inorg. Chem. 53(24), 13220–13226 (2014)

    CAS  PubMed  Google Scholar 

  62. Alberti, G., Costantino, U., Casciola, M., Ferroni, S., Massinelli, L., Staiti, P.: "Preparation, characterization and proton conductivity of titanium phosphate sulfophenyl phosphonate. Solid State Ion. 145(1–4), 249–255 (2001)

    Article  Google Scholar 

  63. Chakraborty, D., Bej, S., Sahoo, S., Chongdar, S., Ghosh, A., Banerjee, P., Bhaumik, A.: Novel Nanoporous Ti-phosphonate metal-organic framework for selective sensing of 2, 4, 6-trinitrophenol and a promising electrode in an energy storage device. ACS Sustain. Chem. Eng. 9(42), 14224–14237 (2021)

    Article  CAS  Google Scholar 

  64. Murugavel, R., Choudhury, A.: Mrinalini Ganapati Walawalkar, Ramasamy Pothiraja, and Chintamani Nagesa Ramachandra Rao. Metal complexes of organophosphate esters and open-framework metal phosphates: synthesis, structure, transformations, and applications. Chem. Rev. 108(9), 3549–3655 (2008)

    CAS  Google Scholar 

  65. Poizot, P., Gaubicher, J., Renault, S., Dubois, L., Liang, Y., Yao, Y.: Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120(14), 6490–6557 (2020)

    Article  CAS  PubMed  Google Scholar 

  66. Afrin, S.: Muhammad Waqas Khan, Enamul Haque, Baiyu Ren, and Jian Zhen Ou. Recent advances in the tuning of the organic framework materials-the selections of ligands, reaction conditions, and post-synthesis approaches. J. Colloid Interface Sci. 623, 378–404 (2022)

    CAS  PubMed  Google Scholar 

  67. Peeples, C.A., Kober, D., Schmitt, F.J., Tholen, P., Siemensmeyer, K., Halldorson, Q., Çoşut, B., Gurlo, A., Yazaydin, A.O., Hanna, G., Yücesan, G.: A 3D Cu‐naphthalene‐phosphonate metal–organic framework with ultra‐high electrical conductivity. Adv. Funct. Mater. 31(3), 2007294 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nawishta Jabeen or Jazib Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jabeen, N., Hussain, A., Ali, J. (2023). Metal Phosphates/Phosphonates for Supercapacitor Applications. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_14

Download citation

Publish with us

Policies and ethics