Skip to main content

Metal Phosphates/Phosphonates for Fuel Cells

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 313 Accesses

Abstract

The rapid development of the era of social electrification has put forward higher requirements for sustainable and clean energy. The development of high-performance energy storage devices is the key to meeting the above requirements, among which fuel cells have been widely used due to their high work efficiency, high energy density, and long cycle life. In recent years, metal phosphates/phosphonates have attracted extensive research as fuel cell materials due to their abundant resources, environmental protection, and low cost. It is worth noting that the nanostructure design of metal phosphates and phosphonates has an important impact on improving their performance. In this chapter, we introduce the synthetic strategies of metal phosphates/phosphonates and the recent progress in their applications in the field of fuel cells. The phosphate/phosphonate moiety can act as a ligand site/linker due to its strong affinity for the metal center, which enables diverse synthetic strategies for metal phosphates/phosphonates. Through the structural design of metal phosphates/phosphonates, great progress has been made in the application of metal phosphates/phosphonates as functional materials in the field of fuel cells. However, there are still some key problems to be solved in the practical application process. Metal phosphates/phosphonates as functional materials have made great progress in the field of fuel cells; however, there are still many key problems to be solved. Finally, the future development direction of enhancing the electrochemical properties of metal phosphates/phosphonates-based fuel cells has been prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., Zhao, Y., Fan, L., Wang, H., Hou, Z., Huo, S., Brandon, N.P., Yin, Y., Guiver, M.D.: Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, Y.P., Yin, J., Abou-Hamad, E., Liu, X.K., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32, 1906368 (2020)

    Article  CAS  Google Scholar 

  3. Li, H., Sun, Y., Yuan, Z.Y., Zhu, Y.P., Ma, T.Y.: Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 3222–3227 (2018)

    Article  CAS  Google Scholar 

  4. Gelfand, B.S., Huynh, R.P.S., Mah, R.K., Shimizu, G.K.H.: Mediating order and modulating porosity by controlled hydrolysis in a phosphonate monoester metal–organic framework. Angew. Chem. Int. Ed. 55, 14614–14617 (2016)

    Article  CAS  Google Scholar 

  5. Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., Yamauchi, Y.: Phosphorus-based mesoporous materials for energy storage and conversion. Joule 2, 2289–2306 (2018)

    Article  CAS  Google Scholar 

  6. Sun, Z., Lin, J., Hou, K., Guan, L., Zhan, H.: Pore engineering of an Fe–N–C electrocatalyst to enhance the performance for the oxygen reduction reaction by adding g-C3N4 into polyaniline and cyanamide as a precursor. J. Mater. Chem. A. 8, 7273–7279 (2020)

    Article  CAS  Google Scholar 

  7. Shamzhy, M., Opanasenko, M., Concepción, P., Martínez, A.: New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 48, 1095–1149 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J., Wang, A., Tan, J., Li, X., Van Bokhoven, J.A., Hu, Y.: Synthesis of novel nanotubular mesoporous nickel phosphates with high performance in epoxidation. J. Mater. Chem. 18, 3601–3607 (2008)

    Article  CAS  Google Scholar 

  9. Prélot, B., Zemb, T.: Calcium phosphate precipitation in catanionic templates. Mater. Sci. Eng. C. 25, 553–559 (2005)

    Article  Google Scholar 

  10. Hu, Y., Zhang, Y., Li, C., Wang, L., Du, Y., Mo, G., Li, X., Cheetham, A.K., Wang, J., Hu, Y., Li, C., Wang, L., Cheetham, A.K., Wang, J.: Guided assembly of microporous/mesoporous manganese phosphates by bifunctional organophosphonic acid etching and templating. Adv. Mater. 31, 1901124 (2019)

    Article  Google Scholar 

  11. Thieme, M., Schüth, F.: Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route. Microporous Mesoporous Mater. 27, 193–200 (1999)

    Article  CAS  Google Scholar 

  12. Serre, C., Taulelle, F., Ferey, G.: Rational design of porous titanophosphates. Chem. Commun. 3, 2755–2765 (2003)

    Article  Google Scholar 

  13. Serre, C., Hervieu, M., Magnier, C., Taulelle, F., Férey, G.: Synthesis and characterization of mesostructured titanium(IV) fluorophosphates with a semicrystalline inorganic framework. Chem. Mater. 14, 180–188 (2002)

    Article  CAS  Google Scholar 

  14. Yin, Z., Sakamoto, Y., Yu, J., Sun, S., Terasaki, O., Xu, R.: Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system. J. Am. Chem. Soc. 126, 8882–8883 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Tian, B., Liu, X., Tu, B., Yu, C., Fan, J., Wang, L., Xie, S., Stucky, G.D., Zhao, D.: Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs, Nat. Mater. 23(2) 159–163 (2003)

    Google Scholar 

  16. Nishiyama, Y., Tanaka, S., Hillhouse, H.W., Nishiyama, N., Egashira, Y., Ueyama, K.: Synthesis of ordered mesoporous zirconium phosphate films by spin coating and vapor treatments. Langmuir 22, 9469–9472 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Miao, Z., Xu, L., Song, H., Zhao, H., Chou, L.: One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties, Catal. Sci. Technol. 3, 1942–1954 (2013)

    CAS  Google Scholar 

  18. Mal, N.K., Ichikawa, S., Fujiwara, M.: Synthesis of a novel mesoporous tin phosphate, SnPO4. Chem. Commun. 2, 112–113 (2002)

    Article  Google Scholar 

  19. Alberti, G., Costantino, U., Allulli, S., Tomassini, N.: Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R=organic radical): A new class of materials having layered structure of the zirconium phosphate type. J. Inorg. Nucl. Chem. 40, 1113–1117 (1978)

    Article  CAS  Google Scholar 

  20. Alberti, G., Marmottini, F., Murcia-Mascaros, S., Vivani, R.: Preparation and preliminary characterization of a covalently pillared zirconium phosphate-diphosphonate with interlayer microporosity. Angew. Chemie Int. Ed. 33, 1594–1597 (1994)

    Article  Google Scholar 

  21. Clearfield, A.: Organically pillared micro- and mesoporous materials. Chem. Mater. 10, 2801–2810 (1998)

    Article  CAS  Google Scholar 

  22. Pramanik, M., Patra, A.K., Bhaumik, A.: Self-assembled titanium phosphonate nanomaterial having a mesoscopic void space and its optoelectronic application. Dalt. Trans. 42, 5140–5149 (2013)

    Article  CAS  Google Scholar 

  23. Kinnibrugh, T.L., Ayi, A.A., Bakhmutov, V.I., Zoń, J., Clearfield, A.: Probing structural changes in a phosphonate-based metal-organic framework exhibiting reversible dehydration. Cryst. Growth Des. 13, 2973–2981 (2013)

    Article  CAS  Google Scholar 

  24. Fidelli, A.M., Armakola, E., Demadis, K.D., Kessler, V.G., Escuer, A., Papaefstathiou, G.S.: CuII frameworks from Di-2-pyridyl ketone and benzene-1,3,5-triphosphonic acid. Eur. J. Inorg. Chem. 2018, 91–98 (2018)

    Article  CAS  Google Scholar 

  25. Vilela, S.M.F., Ananias, D., Gomes, A.C., Valente, A.A., Carlos, L.D., Cavaleiro, J.A.S., Rocha, J., Tomé, J.P.C., Almeida Paz, F.A.: Multi-functional metal–organic frameworks assembled from a tripodal organic linker, J. Mater. Chem. 22 18354–18371 (2012)

    Google Scholar 

  26. Ma, T.Y., Zhang, X.J., Yuan, Z.Y.: Hierarchically meso-/macroporous titanium tetraphosphonate materials: Synthesis, photocatalytic activity and heavy metal ion adsorption. Microporous Mesoporous Mater. 123, 234–242 (2009)

    Article  CAS  Google Scholar 

  27. Y. Han, D. Zhang, L.L. Chng, J. Sun, L. Zhao, X. Zou, J.Y. Ying, A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface, Nat. Chem. 2009 12. 1 (2009) 123–127.

    Google Scholar 

  28. Che, S., Liu, Z., Ohsuna, T., Sakamoto, K., Terasaki, O., Tatsumi, T.: Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Tüysüz, H., Lehmann, C.W., Bongard, H., Tesche, B., Schmidt, R., Schüth, F.: Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 130, 11510–11517 (2008)

    Article  PubMed  Google Scholar 

  30. Sinhamahapatra, A., Sutradhar, N., Roy, B., Tarafdar, A., Bajaj, H.C., Panda, A.B.: Mesoporous zirconium phosphate catalyzed reactions: Synthesis of industrially important chemicals in solvent-free conditions. Appl. Catal. A. 385, 22–30 (2010)

    Article  CAS  Google Scholar 

  31. Kimura, T.: Synthesis of mesostructured and mesoporous aluminum organophosphonates prepared by using diphosphonic acids with alkylene groups. Chem. Mater. 17, 337–344 (2005)

    Article  CAS  Google Scholar 

  32. Kimura, T., Nakashima, D., Miyamoto, N.: Lamellar mesostructured aluminum organophosphonate with unique crystalline framework. Chem. Lett. 38, 916–917 (2009)

    Article  CAS  Google Scholar 

  33. Yu, D., Wu, C., Kong, Y., Xue, N., Guo, X., Ding, W.: Structural and catalytic investigation of mesoporous iron phosphate. J. Phys. Chem. C. 111, 14394–14399 (2007)

    Article  CAS  Google Scholar 

  34. Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S.Z.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Harzandi, A.M., Shadman, S., Ha, M., Myung, C.W., Kim, D.Y., Park, H.J., Sultan, S., Noh, W.S., Lee, W., Thangavel, P., Byun, W.J., hun Lee, S., Tiwari, J.N., Shin, T.J., Park, J.H., Lee, Z., Lee, J.S., Kim, K.S.: Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability, Appl. Catal. B. 270 118896 (2020)

    Google Scholar 

  36. Zhou, T.H., Du, Y.H., Yin, S.M., Tian, X.Z., Yang, H.B., Wang, X., Liu, B., Zheng, H.M., Qiao, S.Z., Xu, R.: Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9, 2563–2570 (2016)

    Article  CAS  Google Scholar 

  37. Xu, L.H., Zeng, H.B., Zhang, X.J., Cosnier, S., Marks, R.S., Shan, D.: Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER. J. Catal. 377, 20–27 (2019)

    Article  CAS  Google Scholar 

  38. Zhao, H., Yuan, Z.Y.: Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 12, 3797–3810 (2020)

    Article  CAS  Google Scholar 

  39. Singh, S.K., Takeyasu, K., Nakamura, J.: Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019)

    Article  Google Scholar 

  40. Chen, G.B., Liu, P., Liao, Z.Q., Sun, F.F., He, Y.H., Zhong, H.X., Zhang, T., Zschech, E., Chen, M.W., Wu, G., Zhang, J., Feng, X.L.: Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 32, 1907399 (2020)

    Article  CAS  Google Scholar 

  41. Zhao, H., Yuan, Z.Y.: Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. J. Energy Chem. 54, 89–104 (2021)

    Article  CAS  Google Scholar 

  42. Liu, Z., Zhang, C., Liu, H., Feng, L.: Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B. 276, 119165 (2020)

    Article  CAS  Google Scholar 

  43. Zhao, H., Weng, C.C., Ren, J.T., Ge, L., Liu, Y.P., Yuan, Z.Y.: Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts, Chinese. J. Catal. 41, 259–267 (2020)

    CAS  Google Scholar 

  44. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy. 35, 9349–9384 (2010)

    Article  CAS  Google Scholar 

  45. Jin, Y.G., Qiao, S.Z., Xu, Z.P., Da Costa, J.C.D., Lu, G.Q.: Porous silica nanospheres functionalized with phosphonic acid as intermediate-temperature proton conductors. J. Phys. Chem. C. 113, 3157–3163 (2009)

    Article  CAS  Google Scholar 

  46. Aslan, A., Bozkurt, A.: Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255, 89–95 (2014)

    Article  CAS  Google Scholar 

  47. Wei, Y.S., Hu, X.P., Han, Z., Dong, X.Y., Zang, S.Q., Mak, T.C.W.: Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505–3512 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, S., Zhou, H., Miyoshi, T., Hibino, M., Honma, I., Ichihara, M.: Self-assembly of the mesoporous electrode material Li3Fe2(PO4)3 using a cationic surfactant as the template. Adv. Mater. 16, 2012–2017 (2004)

    Article  CAS  Google Scholar 

  49. Mal, N.K., Bhaumik, A., Matsukata, M., Fujiwara, M.: Syntheses of mesoporous hybrid iron oxophenyl phosphate, iron oxophosphate, and sulfonated oxophenyl phosphate. Ind. Eng. Chem. Res. 45, 7748–7751 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runwei Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mo, R. (2023). Metal Phosphates/Phosphonates for Fuel Cells. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_11

Download citation

Publish with us

Policies and ethics