Skip to main content

Do Seasonal Frugivory and Cognition Shape Foraging Movements in Wild Western Gorillas?

  • Chapter
  • First Online:
Movement Ecology of Afrotropical Forest Mammals

Abstract

Tropical forests show high spatiotemporal seasonal variation in food availability, especially for fruits. To forage efficiently, frugivorous primates are expected to have higher spatiotemporal knowledge of food availability than folivorous primates. Here, we compiled published and new evidence to shed light on the foraging strategies and the underpinning cognition in the seasonally frugivorous western gorilla (G. gorilla) in response to seasonal changes in resources (high- and low-fruit seasons). Specifically, we assessed how western gorillas decide where to feed (movement heuristic and spatial knowledge), how to move (e.g., movement speed and straightness), and when to go (temporal knowledge) and come back to feeding sites (recursion pattern) when feeding mostly on fruits or leaves. Based on GPS tracks continuously recorded on three habituated groups in Central African Republic (May 2016 to November 2017), we found that western gorillas rely on spatiotemporal knowledge to decide where to go and when in both dietary seasons. Space-use patterns (daily path length and weekly range) were larger during the high-fruit season because of changes in food spatial distribution. However, the foraging strategies barely changed with seasons in terms of speed, straightness, and recursion patterns. Our results highlight how spatiotemporal cognition may buffer the effects of changes in food availability in seasonal frugivorous species. Given their role in seed dispersal, characterizing the cognition underlying tropical frugivore movements may provide insights into understanding large-scale ecological processes underpinning tropical forest regeneration and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allman, J., Mcaughlin, T., & Hakeem, A. (1993). Brain weight and life-span in primate species. Proceedings of the National Academy of Sciences of the USA, 90, 118–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3–4), 227–266. https://doi.org/10.1163/156853974X00534

    Article  CAS  PubMed  Google Scholar 

  • Avgar, T., Street, G., & Fryxell, J. M. (2014). On the adaptive benefits of mammal migration. Canadian Journal of Zoology, 92(6), 481–490.

    Article  Google Scholar 

  • Barks, S. K., Calhoun, M. E., Hopkins, W. D., Cranfield, M. R., Mudakikwa, A., Stoinski, T. S., Patterson, F. G., Erwin, J. M., Hecht, E. E., Hof, P. R., & Sherwood, C. C. (2015). Brain organization of gorillas reflects species differences in ecology. American Journal of Physical Anthropology, 156(2), 252–262. https://doi.org/10.1002/ajpa.22646

    Article  PubMed  Google Scholar 

  • Bartumeus, F., Campos, D., Ryu, W. S., Lloret-Cabot, R., Méndez, V., & Catalan, J. (2016). Foraging success under uncertainty: Search tradeoffs and optimal space use. Ecology Letters, 19(11), 1299–1313. https://doi.org/10.1111/ele.12660

    Article  PubMed  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path: Straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2), 209–220.

    Article  PubMed  Google Scholar 

  • Benhamou, S. (2010). Orientation and navigation. Encyclopedia of Behavioral Neuroscience, 2, 497–503.

    Article  Google Scholar 

  • Benhamou, S., & Riotte-Lambert, L. (2012). Beyond the utilization distribution: Identifying home range areas that are intensively exploited or repeatedly visited. Ecological Modelling, 227, 112–116.

    Article  Google Scholar 

  • Bovet, P., & Benhamou, S. (1988). Spatial analysis of animals’ movements using a correlated random walk model. Journal of Theoretical Biology, 131(4), 419–433.

    Google Scholar 

  • Boyer, D., & Walsh, P. D. (2010). Modelling the mobility of living organisms in heterogeneous landscapes: Does memory improve foraging success? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5645–5659.

    Google Scholar 

  • Bracis, C., Gurarie, E., Van Moorter, B., & Goodwin, R. A. (2015). Memory effects on movement behavior in animal foraging. PLoS One, 10(8), e0136057. https://doi.org/10.1371/journal.pone.0136057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracis, C., Bildstein, K., & Mueller, T. (2018). Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography, 41, 1801. https://doi.org/10.1111/ecog.03618

    Article  Google Scholar 

  • Breuer, T., Hockemba, M. B. N., Olejniczak, C., Parnell, R. J., & Stokes, E. J. (2009). Physical maturation, life-history classes and age estimates of free-ranging western gorillas -Insights from Mbeli Bai, Republic of Congo. American Journal of Primatology, 71(2), 106–119.

    Article  PubMed  Google Scholar 

  • Brockman, D. K., & Van Schaik, C. P. (2005). Seasonality in primates: studies of living and extinct human and non-human primates (Vol. 44). Cambridge University Press.

    Google Scholar 

  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35, 625–641. ISSN: 08966273.

    Google Scholar 

  • Bush, E. R., et al. (2020). Long-term collapse in fruit availability threatens Central African forest megafauna. Science, 370(6521), 1219–1222.

    Article  CAS  PubMed  Google Scholar 

  • Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519.

    Article  Google Scholar 

  • Campera, M., Serra, V., Balestri, M., Barresi, M., Ravaolahy, M., Randriatafika, F., & Donati, G. (2014). Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. International Journal of Primatology, 35, 957–975.

    Article  Google Scholar 

  • Chapman, C. A., & Onderdonk, D. A. (1998). Forests without primates: Primate/plant codependency. American Journal of Primatology, 45(1), 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, C. A., et al. (2005). A long-term evaluation of fruiting phenology: Importance of climate change. Journal of Tropical Ecology, 21(1), 31–45.

    Article  Google Scholar 

  • Chapman, C. A., et al. (2013). Are primates ecosystem engineers? International Journal of Primatology, 34(1), 1–14.

    Article  Google Scholar 

  • Cheyne, S. M., Capilla, B. R., Abdulaziz, K., Supiansyah, A., Cahyaningrum, E., & Smith, D. E. (2019). Home range variation and site fidelity of Bornean southern gibbons [Hylobates albibarbis] from 2010–2018. PLoS ONE, 14(7), e0217784. https://doi.org/10.1371/journal.pone.0217784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. Journal of Morphology, 166(3), 337–386.

    Article  CAS  PubMed  Google Scholar 

  • Cipolletta, C. (2004). Effects of group dynamics and diet on the ranging patterns of a western gorilla group (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. American Journal of Primatology, 64(2), 193–205.

    Article  PubMed  Google Scholar 

  • Colwell, R. K. (1974). Predictability, constancy, and contingency of periodic phenomena. Ecology, 55(5), 1148–1153.

    Article  Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. International Journal of Primatology, 19, 971–998.

    Article  Google Scholar 

  • de Guinea, M., et al. (2019). Arboreal route navigation in a Neotropical mammal: Energetic implications associated with tree monitoring and landscape attributes. Movement Ecology, 7(1), 1–12.

    Article  Google Scholar 

  • Doran, D. M., et al. (2002). Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. American Journal of Primatology, 58(3), 91–116.

    Article  PubMed  Google Scholar 

  • Doran-Sheehy, D. M., Greer, D., Mongo, P., & Schwindt, D. (2004). Impact of ecological and social factors on ranging in western gorillas. American Journal of Primatology, 64, 207–222.

    Article  PubMed  Google Scholar 

  • English, M., Ancrenaz, M., Gillespie, G., Goossens, B., Nathan, S., & Linklater, W. (2014). Foraging site recursion by forest Elephants Elephas maximus borneensis. Current Zoology, 60(4), 551–559. https://doi.org/10.1093/czoolo/60.4.551

    Article  Google Scholar 

  • Etiendem, D. N., & Tagg, N. (2013). Feeding ecology of Cross River gorillas (Gorilla gorilla diehli) at Mawambi Hills: The influence of resource seasonality. International Journal of Primatology, 34(6), 1261–1280.

    Article  Google Scholar 

  • Fuh, T. N., Todd, A., Feistner, A., Donati, G., & Masi, S. (2022). Group differences in feeding and diet composition of wild western gorillas. Scientific Reports, 12, 9569. https://doi.org/10.1038/s41598-022-13728-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganas, J., & Robbins, M. M. (2005). Ranging behavior of the mountain gorillas (gorilla beringei beringei) in Bwindi impenetrable National Park, Uganda: A test of the ecological constraints model. Behavioral Ecology and Sociobiology, 58, 277–288.

    Article  Google Scholar 

  • Goldsmith, M. L. (1999). Ecological constraints on the foraging effort of western gorillas (Gorilla gorilla gorilla) at Bai Hoköu, Central African Republic. International Journal of Primatology, 20(1), 1–23.

    Article  Google Scholar 

  • Grove, M. (2013). The evolution of spatial memory. Mathematical Biosciences, 242, 25–32.issn: 00255564.

    Article  PubMed  Google Scholar 

  • Harrison, X. A., et al. (2011). Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology, 80(1), 4–18.

    Article  PubMed  Google Scholar 

  • Hartig F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.5. https://CRAN.R-project.org/package=DHARMa

  • Hopkins, M. E. (2016). Mantled howler monkey spatial foraging decisions reflect spatial and temporal knowledge of resource distributions. Animal Cognition, 19(2), 387–403.

    Article  PubMed  Google Scholar 

  • Jang, H., et al. (2019). Sun, age and test location affect spatial orientation in human foragers in rainforests. Proceedings of the Royal Society B, 286(1907), 20190934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janmaat, K. R., Olupot, W., Chancellor, R. L., Arlet, M. E., & Waser, P. M. (2009). Long-term site fidelity and individual home range shifts in lophocebus albigena. International Journal of Primatology, 30(3), 443–466. https://doi.org/10.1007/s10764-009-9352-3

    Article  PubMed  Google Scholar 

  • Janmaat, K. R. L., et al. (2012). The use of fruiting synchrony by foraging mangabey monkeys: a ‘simple tool’ to find fruit. Animal Cognition, 15(1), 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013a). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86(6), 1183–1205.

    Article  Google Scholar 

  • Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013b). Taï chimpanzees use botanical skills to discover fruit: what we can learn from their mistakes. Animal Cognition, 16(6), 851–860.

    Article  PubMed  Google Scholar 

  • Janmaat, K. R. L., et al. (2016). Spatio-temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit. American Journal of Primatology, 78(6), 626–645.

    Article  PubMed  Google Scholar 

  • Janmaat, K. R. L., Boesch, C., & Wittig, R. M. (2019). "Temporal cognition in Taï chimpanzees." The chimpanzees of the Taï forest: 40 years of research (pp. 451–466). Cambridge University Press.

    Book  Google Scholar 

  • Janmaat, K. R., de Guinea, M., Collet, J., Byrne, R. W., Robira, B., van Loon, E., Jang, H., Biro, D., Ramos-Fernández, G., Ross, C., Presotto, A., Allritz, M., Alavi, S., & Van Belle, S. (2021). Using natural travel paths to infer and compare primate cognition in the wild. iScience, 24(4), 102–343. https://doi.org/10.1016/j.isci.2021.102343

    Article  Google Scholar 

  • Janson, C. H. (1998). Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Animal Behaviour, 55(5), 1229–1243.

    Article  CAS  PubMed  Google Scholar 

  • Janson, C. H. (2007). Experimental evidence for route integration and strategic planning in wild capuchin monkeys. Animal Cognition, 10(3), 341–356.

    Article  PubMed  Google Scholar 

  • Janson, C. H. (2016). Capuchins, space, time and memory: An experimental test of what-where-when memory in wild monkeys. Proceedings of the Royal Society B: Biological Sciences, 283(1840), 20161432.

    Article  PubMed Central  Google Scholar 

  • José-Domínguez, J. M., Savini, T., & Asensio, N. (2015). Ranging and site fidelity in northern pigtailed macaques (Macaca leonina) over different temporal scales. American Journal of Primatology, 77(8), 841–853. https://doi.org/10.1002/ajp.22409

    Article  PubMed  Google Scholar 

  • Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., Pezzulo, G., Ramnani, N., Riva, D., Schmahmann, J., Vandervert, L., & Yamazaki, T. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum, 13(1), 151–177. https://doi.org/10.1007/s12311-013-0511-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodwick, J. L., & Salmi, R. (2019). Nutritional composition of the diet of the western gorilla (Gorilla gorilla): Interspecific variation in diet quality. American Journal of Primatology, 81(9), e23044. https://doi.org/10.1002/ajp.23044

    Article  CAS  PubMed  Google Scholar 

  • Magliocca, F., & Gautier-Hion, A. (2002). Mineral content as a basis for food selection by western lowland gorillas in a forest clearing. American Journal of Primatology, 57(2), 67–77.

    Article  PubMed  Google Scholar 

  • Martin, J., Benhamou, S., Yoganand, K., & Owen-Smith, N. (2015). Coping with spatial heterogeneity and temporal variability in resources and risks: Adaptive movement behaviour by a large grazing herbivore. PLoS One, 10(2), e0118461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masi, S., & Breuer, T. (2018). Dialium seed coprophagy in wild western gorillas: multiple nutritional benefits and toxicity reduction hypotheses. American Journal of Primatology, 80, e22752. https://doi.org/10.1002/ajp.22752

    Article  CAS  PubMed  Google Scholar 

  • Masi, S., Cipolletta, C., & Robbins, M. M. (2009). Western Lowland Gorillas (Gorilla gorilla gorilla) change their activity patterns in response to Frugivory. American Journal of Primatology, 71, 91–100.

    Article  PubMed  Google Scholar 

  • Masi, S., Mundry, R., Ortmann, S., Cipolletta, C., Boitani, L., & Robbins, M. M. (2015). The influence of seasonal frugivory on nutrient and energy intake in wild western gorillas. PLoS. ONE, 10(7), e0129254. https://doi.org/10.1371/journal.pone.0129254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann, R., Bracken, A. M., Christensen, C., Fuertbauer, I., & King, A. J. (2021). The relationship between GPS sampling interval and estimated daily travel distances in chacma baboons (Papio ursinus). International Journal of Primatology, 42(4), 589–599.

    Article  Google Scholar 

  • Mehlman, P. T., & Doran, D. M. (2002). Influencing western gorilla nest construction at Mondika Research Center. International Journal of Primatology, 23(6), 1257–1285.

    Article  Google Scholar 

  • Miglietta, S., Bardino, G., Sotto-Mayor, A., Meulman, H., Breuer, T., Fuh, T., & Masi, S. (2021). Absence of specific individuals and high food abundance elicit food calls in wild western gorillas. Behavioral Ecology and Sociobiology, 75, 98. https://doi.org/10.1007/s00265-021-03027-y

    Article  Google Scholar 

  • Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83(3), 534–548. https://doi.org/10.1525/aa.1981.83.3.02a00020

    Article  Google Scholar 

  • Nathan, R., et al. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49), 19052–19059.

    Article  CAS  Google Scholar 

  • Normand, E., Ban, S. D., & Boesch, C. (2009). Forest chimpanzees (Pan troglodytes verus) remember the location of numerous fruit trees. Animal Cognition, 12(6), 797–807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parada, J., Valenta, K., Chapman, C., & Reyna-Hurtado, R. (2017). Spider monkey (Ateles geoffroyi) travel to resting trees in a seasonal forest of the Yucatan Peninsula, Mexico. Folia Primatologica, 87(6), 375–380.

    Article  Google Scholar 

  • Pavelka, M. S., & Knopff, K. H. (2004). Diet and activity in black howler monkeys (Alouatta pigra) in southern Belize: Does degree of frugivory influence activity level? Primates, 45, 105–111.

    Article  PubMed  Google Scholar 

  • Plante, S., Colchero, F., & Calmé, S. (2014). Foraging strategy of a neotropical primate: How intrinsic and extrinsic factors influence destination and residence time. Journal of Animal Ecology, 83(1), 116–125.

    Article  PubMed  Google Scholar 

  • Polansky, L., & Boesch, C. (2013). Long-term changes in fruit phenology in a West African lowland tropical rain forest are not explained by rainfall. Biotropica, 45(4), 434–440.

    Article  Google Scholar 

  • Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62(3), 209–228.

    Article  PubMed  Google Scholar 

  • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Raichle, M. E. (2006). The brain’s dark energy. Science, 314(5803), 1249–1250.

    CAS  PubMed  Google Scholar 

  • Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. PLoS ONE, 8(5), e62813. https://doi.org/10.1371/journal.pone.0062813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remis, M. J., Dierenfeld, E. S., Mowry, C. B., & Carroll, R. W. (2001). Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. International Journal of Primatology, 22, 807–836.

    Article  Google Scholar 

  • Reyna-Hurtado, R., Chapman, C. A., Calme, S., & Pedersen, E. (2012). Searching in heterogeneous environments: foraging strategies in the white-lipped peccary (Tayassu pecari). Journal of Mammalogy, 93, 124–133.

    Article  Google Scholar 

  • Reyna-Hurtado, R., Teichroeb, J. A., Bonnell, T., Hernández-Sarabia, R. U., Vickers, S. M., Serio-Silva, J. C., Sicotte, P., & Chapman, C. A. (2018). Primates adjust movement strategies due to changing food availability. Behavioral Ecology, 29(2), 368–376. https://doi.org/10.1093/beheco/arx176

    Article  Google Scholar 

  • Riotte-Lambert, L., & Matthiopoulos, J. (2020). Environmental predictability as a cause and consequence of animal movement. Trends in Ecology and Evolution, 35(2), 163–174. https://doi.org/10.1016/j.tree.2019.09.009

    Article  PubMed  Google Scholar 

  • Robira, B., Benhamou, S., Masi, S., Llaurens, V., & Riotte-Lambert, L. (2021). Foraging efficiency in temporally predictable environments: Is a long-term temporal memory really advantageous? Royal Society Open Science, 9, 210809.

    Article  Google Scholar 

  • Robira, B., Benhamou, S., Bayanga, E. O., Breuer, T., Masi S. (in review). How do primates decide where to feed? Insights from wild western gorillas. Animal Behaviour.

    Google Scholar 

  • Rogers, M. E., et al. (2004). Western gorilla diet: a synthesis from six sites. American Journal of Primatology, 64(2), 173–192.

    Article  PubMed  Google Scholar 

  • Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21, 691–702. https://doi.org/10.1016/j.tics.2017.05.011

    Article  PubMed  Google Scholar 

  • Rothman, J. M., Dierenfeld, E. S., Hintz, H. F., & Pell, A. N. (2008). Nutritional quality of gorilla diets: consequences of age, sex, and season. Oecologia, 155, 111–122. https://doi.org/10.1007/s00442-007-0901-1. PMID: 17999090.

    Article  PubMed  Google Scholar 

  • Salas, E. A. L. (2021). Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review. Geo-spatial Information Science, 24(2), 179–200.

    Article  Google Scholar 

  • Salmi, R., Presotto, A., Scarry, C. J., Hawman, P., & Doran-Sheehy, D. M. (2020). Spatial cognition in western gorillas (Gorilla gorilla): An analysis of distance, linearity, and speed of travel routes. Animal Cognition, 23(3), 545–557. https://doi.org/10.1007/s10071-020-01358-3

    Article  PubMed  Google Scholar 

  • Sayers, K. (2013). On folivory, competition, and intelligence: Generalisms, overgeneralizations, and models of primate evolution. Primates, 54(2), 111–124.

    Article  PubMed  Google Scholar 

  • Seiler, N., & Robbins, M. M. (2020). Ecological correlates of space use patterns in wild western lowland gorillas. American Journal of Primatology, 82(9), e23168.

    Article  PubMed  Google Scholar 

  • Sekercioglu, C. H. (2010). Partial migration in tropical birds: The frontier of movement ecology. Journal of Animal Ecology, 79(5), 933–936.

    Article  PubMed  Google Scholar 

  • Shaw, A. K. (2020). Causes and consequences of individual variation in animal movement. Movement Ecology, 8(1), 1–12.

    Article  Google Scholar 

  • Signer, J., Fieberg, J., & Avgar, T. (2011). Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution, 2019(9), 880–890. https://doi.org/10.1002/ece3.4823

    Article  Google Scholar 

  • Snaith, T. V., & Chapman, C. A. (2007). Primate group size and interpreting socioecological models: Do folivores really play by different rules? Evolutionary Anthropology: Issues, News, and Reviews, 16(3), 94–106.

    Google Scholar 

  • Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332. https://doi.org/10.1016/j.tics.2017.02.005

  • Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters, 5(1), 130–133.

    Article  PubMed  Google Scholar 

  • Teichroeb, J. A., & Vining, A. Q. (2019). Navigation strategies in three nocturnal lemur species: diet. predicts heuristic use and degree of exploratory behavior. Animal Cognition, 22(3), 343–354. https://doi.org/10.1007/s10071-019-01247-4

    Article  PubMed  Google Scholar 

  • Teitelbaum, C. S., & Mueller, T. (2019). Beyond migration: Causes and consequences of nomadic animal movements. Trends in Ecology & Evolution, 34(6), 569–581.

    Article  Google Scholar 

  • Terborgh, J. (1986). Community aspects of frugivory in tropical forests. Frugivores and seed dispersal. (pp. 371–384). Springer, Dordrecht.

    Google Scholar 

  • Trapanese, C., Meunier, H., Masi, S. (2018). What, where and when: spatial foraging decisions in primates. Biological Reviews. https://doi.org/10.1111/brv.12462.

  • Trapanese, C., Robira, B., Tonachella, G., Di Gristina, S., Meunier, H., & Masi, S. (2019). Where and what? Frugivory is associated with more efficient foraging in three semi-free ranging primate species. Royal Society Open Science, 6(5), 181722. https://doi.org/10.1098/rsos.181722

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker, M. A., et al. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359(6374), 466–469.

    Article  CAS  PubMed  Google Scholar 

  • Tutin, C. E. (1996). Ranging and social structure of lowland gorillas in the Lopé Reserve, Gabon. Great ape societies (pp. 58–70).

    Google Scholar 

  • van Schaik, C. P., Terborgh, J. W., & Joseph Wright, S. (1993). The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377.

    Article  Google Scholar 

  • van Woerden, J. T., van Schaik, C. P., & Isler, K. (2010). Effects of seasonality on brain size evolution: Evidence from strepsirrhine primates. American Naturalist, 176(6), 758–767. https://doi.org/10.1086/657045

    Article  PubMed  Google Scholar 

  • van Woerden, J. T., Willems, E. P., van Schaik, C. P., & Isler, K. (2012). Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66(1), 191–199. https://doi.org/10.1111/j.1558-5646.2011.01434.x

    Article  PubMed  Google Scholar 

  • van Woerden, J. T., van Schaik, C. P., & Isler, K. (2014). Brief Communication: Seasonality of diet composition is related to brain size in New World Monkeys. American journal of physical anthropology, 154(4), 628–632.

    Article  PubMed  Google Scholar 

  • Volampeno, M. S., Masters, J. C., & Downs, C. T. (2011). Home range size in the blue-eyed black lemur (Eulemur flavifrons): A comparison between dry and wet seasons. Mammalian Biology, 76, 157–164.

    Article  Google Scholar 

  • Wangue, N., Cipollettta, C., Masi, S., & Greer, D. (2015). Ranging patterns of a large western Gorilla group at Dipikar Island in the Campo—Ma’an National Park. Cameroon. Revue de primatologie, 6.

    Google Scholar 

  • Wartmann, F. M., Juárez, C. P., & Fernandez-Duque, E. (2014). Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of northern Argentina. International Journal of Primatology, 35(5), 919–939. https://doi.org/10.1007/s10764-014-9771-7

    Article  Google Scholar 

  • Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.

    Article  Google Scholar 

  • Wright, S. J. (2005). Tropical forests in a changing environment. Trends in Ecology & Evolution, 20(10), 553–560.

    Article  Google Scholar 

  • Zuberbühler, K., & Janmaat, K. (2010). Foraging cognition in non-human primates. Primate Neuroethology, 64–83.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mario Melletti, Rafael Reyna-Hurtado, and Colin Chapman for inviting us to contribute to this chapter. We thank the two reviewers, Kathy Slater and Sophie Calmé, for constructive comments on earlier versions of the manuscript. We are grateful to the Ministry of Higher Education and Scientific Research of CAR for the permission to conduct this research. We deeply thank the Dzanga-Sangha Protected Areas and WWF CAR for allowing us to carry out fieldwork at their sites. Special thanks go to the Bai-Hokou and Mongambe staff for assistance in the field, especially the local Ba’Aka trackers, for their exceptional tracking skills and incredible forest knowledge. We are greatly thankful to Action Transversal du Muséum and the Department of Human and Environment for the Project Federateur of the National Museum of Natural History (MNHN, Paris) for their financial support for this study. We also deeply thank the UMR 7206 and the MNHN for the institutional and the additional financial support. BR was funded by a PhD grant from the French Ministry of Higher Education and Research to the École Normale Supérieure in Paris.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Robira or Shelly Masi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robira, B., Benhamou, S., Fuh, T.N., Masi, S. (2023). Do Seasonal Frugivory and Cognition Shape Foraging Movements in Wild Western Gorillas?. In: Reyna-Hurtado, R., Chapman, C.A., Melletti, M. (eds) Movement Ecology of Afrotropical Forest Mammals. Springer, Cham. https://doi.org/10.1007/978-3-031-27030-7_9

Download citation

Publish with us

Policies and ethics