Skip to main content

Mobile Edge Computing Enabled Intelligent IoT

  • Chapter
  • First Online:
Intelligent Internet of Things Networks

Part of the book series: Wireless Networks ((WN))

  • 275 Accesses

Abstract

The proliferation of the number of IoT devices, the ever-increasing computation intensive applications pose great challenges on resource allocation and offloading. In this chapter, to address spectrum sharing and edge computation offloading problems in SDN-based ultra dense networks, we propose a second-price auction scheme for ensuring the fair bidding for spectrum rent, which enables the MBS edge cloud and SBS edge cloud to occupy the channel in cooperative and competitive modes. Then, a novel deep reinforcement learning (DRL)-based network structure is proposed to jointly optimize task offloading and resource allocation. Finally, we propose two pervasive scenarios including single edge scene and multiple edge scenes. In the single edge scenario, a novel deep reinforcement learning (DRL)-based framework is invoked for collaboratively optimizing the task scheduling, transmission power, and CPU cycle frequency under metabolic channel conditions. Meanwhile, we propose a multi-agent aided deep deterministic policy gradient (MADDPG) algorithm to alleviate interference in multiple edge scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Li, H. Yao, J. Du, C. Jiang, Z. Han, Y. Liu, Auction design for edge computation ofloading in SDN-based ultra dense networks. IEEE Trans. Mobile Comput. 21, 1580–1595 (2020)

    Article  Google Scholar 

  2. Y. Gong, H. Yao, J. Wang, M. Li, S. Guo, Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things. IEEE Trans. Netw. Sci. Eng. (2022)

    Google Scholar 

  3. Y. Gong, H. Yao, J. Wang, L. Jiang, F.R. Yu, Multi-agent driven resource allocation and interference management for deep edge networks. IEEE Trans. Vehic. Technol. 71(2), 2018–2030 (2021)

    Article  Google Scholar 

  4. H. Yao, H. Liu, P. Zhang, S. Wu, S. Guo, A learning-based approach to intra-domain QoS routing. IEEE Trans. Veh. Technol. 69, 6718–6730 (2020)

    Article  Google Scholar 

  5. J. Du, C. Jiang, H. Zhang, X. Wang, Y. Ren, M. Debbah, Secure satellite-terrestrial transmission over incumbent terrestrial networks via cooperative beamforming. IEEE J. Sel. Areas Commun. 36(7), 1367–1382 (2018)

    Article  Google Scholar 

  6. C. Qiu, H. Yao, R. Yu, F. Xu, C. Zhao, Deep q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks. IEEE Trans. Veh. Technol. 68, 5871–5883 (2019)

    Article  Google Scholar 

  7. H. Yao, T. Mai, X. Xu, P. Zhang, M. Li, Y. Liu, NetworkAI: an intelligent network architecture for self-learning control strategies in software defined networks. IEEE Int. Things J. 5, 4319–4327 (2018)

    Article  Google Scholar 

  8. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in blockchain-based industrial internet of things. IEEE Trans. Ind. Informat. 15, 3602–3609 (2019)

    Article  Google Scholar 

  9. Q. Zhang, C. Zhu, L.T. Yang, Z. Chen, Z. Liang, L. Peng, An incremental CFS algorithm for clustering large data in industrial internet of things. IEEE Trans. Ind. Inform. 13, 1193–1201 (2017)

    Article  Google Scholar 

  10. S. Chen, F. Qin, B. Hu, X. Li, Z. Chen, User-centric ultra-dense networks for 5g: challenges, methodologies, and directions. IEEE Wirel. Commun. 23, 78–85 (2018)

    Article  Google Scholar 

  11. F. Zhou, Y. Wu, R.Q. Hu, Q. Yi, Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36, 1–15 (2018)

    Article  Google Scholar 

  12. F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game based computation offloading in social and cognitive IIoT. IEEE Trans. Ind. Inform. 16, 5444–5455 (2019)

    Article  Google Scholar 

  13. C. Yang, J. Li, N. Qiang, A. Anpalagan, M. Guizani, Interference-aware energy efficiency maximization in 5g ultra-dense networks. IEEE Trans. Commun. 65, 728–739 (2017)

    Article  Google Scholar 

  14. B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Padmanabhan, T. Petty, K. Duda, A. Chanda, A database approach to SDN control plane design. Acm Sigcomm. Comput. Commun. Rev. 47, 15–26 (2017)

    Article  Google Scholar 

  15. A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, R. Kompella, Towards an elastic distributed SDN controller. Comput. Commun. Rev. 43, 7–12 (2013)

    Article  Google Scholar 

  16. T. Mai, H. Yao, S. Guo, Y. Liu, In-network computing powered mobile edge: Toward high performance industrial IoT. IEEE Netw. 35(1), 289–295 (2020)

    Article  Google Scholar 

  17. G. Mitsis, P.A. Apostolopoulos, E.E. Tsiropoulou, S. Papavassiliou, Intelligent dynamic data offloading in a competitive mobile edge computing market. Future Int. 11, 118 (2019)

    Article  Google Scholar 

  18. L. Duan, J. Huang, B. Shou, Economics of femtocell service provision. IEEE Trans. Mobile Comput. 12, 2261–2273 (2012)

    Article  Google Scholar 

  19. L. Duan, L. Gao, J. Huang, Cooperative spectrum sharing: a contract-based approach. IEEE Trans. Mob. Comput. 13, 174–187 (2012)

    Article  Google Scholar 

  20. Y. Jie, A. Kamal, M. Alnuem, User cooperation solution of multipath streaming application using auction theory, in IEEE Global Communications Conference, Washington, DC (2017)

    Google Scholar 

  21. J. Du, E. Gelenbe, C. Jiang, H. Zhang, Y. Ren, Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks. IEEE J. Sel. Areas Commun. 35(11), 2457–2467 (2017)

    Article  Google Scholar 

  22. B.A.A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 16, 1617–1634 (2014)

    Article  Google Scholar 

  23. A. Blenk, A. Basta, M. Reisslein, W. Kellerer, Survey on network virtualization hypervisors for software defined networking. IEEE Commun. Surv. Tutor. 18, 655–685 (2017)

    Article  Google Scholar 

  24. H. Yao, S. Ma, J. Wang, P. Zhang, S. Guo, A continuous-decision virtual network embedding scheme relying on reinforcement learning. IEEE Trans. Netw. Service Manag. 17, 864–875 (2020)

    Article  Google Scholar 

  25. M.J. Abdel-Rahman, E.D.A. Mazied, A. Mackenzie, S. Midkiff, M.R. Rizk, M. El-Nainay, On stochastic controller placement in software-defined wireless networks, in IEEE Wireless Communications and Networking Conference, San Francisco, CA (2017)

    Google Scholar 

  26. S. Zhou, T. Zhao, Z. Niu, S. Zhou, Software-defined hyper-cellular architecture for green and elastic wireless access. IEEE Commun. Maga. 54, 12–19 (2015)

    Article  Google Scholar 

  27. C. Giraldo, F. Gilcastineira, C. Lopezbravo, F.J. Gonzalezcastano, A software-defined mobile network architecture, in IEEE International Conference on Wireless and Mobile Computing, Larnaca (2014)

    Google Scholar 

  28. R.D.R. Fontes, C.E. Rothenberg, Mininet-WIFI: A platform for hybrid physical-virtual software-defined wireless networking research, in Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis (2016)

    Google Scholar 

  29. N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow:enabling innovation in campus networks. Acm Sigcomm. Comput. Commun. Rev. 38, 69–74 (2008)

    Article  Google Scholar 

  30. M. Jervis, M. Sen, P.L. Stoffa, Network innovation using OpenFlow: a survey. IEEE Commun. Surv. Tutor. 16, 493–512 (2014)

    Article  Google Scholar 

  31. D.B. Rawat, S. Reddy, Recent advances on software defined wireless networking, in SoutheastCon 2016, IEEE, Norfolk, VA (2016)

    Google Scholar 

  32. C. Singhal, S. De, Resource Allocation in Next-Generation Broadband Wireless Access Networks (IGI Global, Pennsylvania, 2011)

    Google Scholar 

  33. P. Jehiel, B. Moldovanu, Auctions with downstream interaction among buyers. RAND J. Econ. 31, 768–791 (2000)

    Article  Google Scholar 

  34. K. Bagwell, P.C. Mavroidis, R.W. Staiger, The case for auctioning countermeasures in the WTO, Technical Report, National Bureau of Economic Research (2003)

    Google Scholar 

  35. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang, et al., Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64(1), 1–74 (2021)

    Article  Google Scholar 

  36. A. Mukherjee, P. Goswami, M.A. Khan, L. Manman, L. Yang, P. Pillai, Energy-efficient resource allocation strategy in massive IoT for industrial 6G applications. IEEE Int. Things J. 8(7), 5194–5201 (2020)

    Article  Google Scholar 

  37. Y. Gong, J. Wang, T. Nie, Deep reinforcement learning aided computation offloading and resource allocation for IoT, in 2020 IEEE Computing, Communications and IoT Applications (ComComAp), Beijing (2020), pp. 01–06

    Google Scholar 

  38. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  39. H. Yao, L. Wang, X. Wang, Z. Lu, Y. Liu, The space-terrestrial integrated network: an overview. IEEE Commun. Mag. 56(9), 178–185 (2018)

    Article  Google Scholar 

  40. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in Blockchain-based industrial Internet of Things. IEEE Trans. Ind. Inf. 15(6), 3602–3609 (2019)

    Article  Google Scholar 

  41. T. Mai, H. Yao, N. Zhang, L. Xu, M. Guizani, S. Guo, Cloud mining pool aided blockchain-enabled internet of things: an evolutionary game approach. IEEE Trans. Cloud Comput. (2021). https://doi.org/10.1109/TCC.2021.3110965

  42. Y. Chen, N. Zhang, Y. Zhang, X. Chen, Dynamic computation offloading in edge computing for internet of things. IEEE Int. Things J. 6(3), 4242–4251 (2018)

    Article  MathSciNet  Google Scholar 

  43. K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A survey of computation offloading for mobile systems. Mob. Netw. Appl. 18(1), 129–140 (2013)

    Article  Google Scholar 

  44. Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, Multi-hop cooperative computation offloading for industrial IoT–edge–cloud computing environments. IEEE Trans. Parall. Distrib. Syst. 30(12), 2759–2774 (2019)

    Article  Google Scholar 

  45. P. Si, Y. He, H. Yao, R. Yang, Y. Zhang, DAVE: offloading delay-tolerant data traffic to connected vehicle networks. IEEE Trans. Vehic. Technol. 65(6), 3941–3953 (2016)

    Article  Google Scholar 

  46. L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, Y. Liu, Multi-UAV-enabled load-balance mobile-edge computing for IoT networks. IEEE Int. Things J. 7(8), 6898–6908 (2020)

    Article  Google Scholar 

  47. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

  48. T.K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, N. Kato, Machine learning meets computation and communication control in evolving edge and cloud: challenges and future perspective. IEEE Commun. Surv. Tutor. 22(1), 38–67 (2019)

    Article  Google Scholar 

  49. P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, X. Shen, Edge coordinated query configuration for low-latency and accurate video analytics. IEEE Trans. Ind. Inf. 16(7), 4855–4864 (2020)

    Article  Google Scholar 

  50. M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource allocation for multi-user multi-task mobile cloud. in IEEE International Conference on Communications. (ICC), Kuala Lumpur (2016), pp. 1–6

    Google Scholar 

  51. S.R. Bickham, M.A. Marro, J.A. Derick, W.-L. Kuang, X. Feng, Y. Hua, Reduced cladding diameter fibers for high-density optical interconnects. J. Lightwave Technol. 38(2), 297–302 (2019)

    Article  Google Scholar 

  52. H. Widiarti, S.-Y. Pyun, D.-H. Cho, Interference mitigation based on femtocells grouping in low duty operation, in IEEE Vehicular Technology Conference (VTC), Ottawa (2010), pp. 1–5

    Google Scholar 

  53. J. Phiri, T.J. Zhao, Using Shannon’s information theory and artificial neural networks to implement multimode authentication, in IEEE International Conference on Communications and Intelligence Information Security (ICCIIS), Nanning (2010), pp. 271–274

    Google Scholar 

  54. C. You, K. Huang, H. Chae, B.-H. Kim, Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2016)

    Article  Google Scholar 

  55. L. Huang, X. Feng, A. Feng, Y. Huang, L.P. Qian, Distributed deep learning-based offloading for mobile edge computing networks. Springer Mob. Netw. Appl. (2018). https://doi.org/10.1007/s11036-018-1177-x

  56. Y. Zhan, S. Guo, P. Li, J. Zhang, A deep reinforcement learning based offloading game in edge computing. IEEE Trans. Comput. 69(6), 883–893 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Qiu, F.R. Yu, H. Yao, C. Jiang, F. Xu, C. Zhao, Blockchain-based software-defined industrial internet of things: a dueling deep Q-learning approach. IEEE Int. Things J. 6(3), 4627–4639 (2018)

    Article  Google Scholar 

  58. L. Huang, S. Bi, Y.-J.A. Zhang, Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)

    Article  Google Scholar 

  59. K.J. Åström, Introduction to Stochastic Control Theory (Courier Corporation, North Chelmsford, 2012)

    MATH  Google Scholar 

  60. S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  61. B. Luo, Y. Yang, D. Liu, Adaptive Q-learning for data-based optimal output regulation with experience replay. IEEE Trans. Cybern. 48(12), 3337–3348 (2018)

    Article  Google Scholar 

  62. Z. Zhao, R. Zhao, J. Xia, X. Lei, D. Li, C. Yuen, L. Fan, A novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networks. IEEE Trans. Ind. Inf. 16(8), 5424–5434 (2019)

    Article  Google Scholar 

  63. J. Wang, L. Zhao, J. Liu, N. Kato, Smart resource allocation for mobile edge computing: A deep reinforcement learning approach. IEEE Trans. Emergi. Topics Comput. 9(3), 1529–1541 (2019)

    Article  Google Scholar 

  64. J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A.V. Vasilakos, Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors J. 16(20), 7373–7380 (2016)

    Google Scholar 

  65. J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J.J. Ramos-Munoz, J.M. Lopez-Soler, A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 22(2), 905–929 (2020)

    Article  Google Scholar 

  66. J. Wang, C. Jiang, H. Zhang, Y. Ren, K.C. Chen, L. Hanzo, Thirty years of machine learning: the road to pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 22(3), 1472–1514 (2020)

    Article  Google Scholar 

  67. W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 34(3), 134–142 (2019)

    Article  Google Scholar 

  68. J. Du, F.R. Yu, G. Lu, J. Wang, J. Jiang, X. Chu, MEC-assisted immersive VR video streaming over terahertz wireless networks: a deep reinforcement learning approach. IEEE Int. Things J. 7(10), 9517–9529 (2020)

    Article  Google Scholar 

  69. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)

    Article  Google Scholar 

  70. H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, S. Yu, Identification of encrypted traffic through attention mechanism based long short term memory. IEEE Trans. Big Data (2019). https://doi.org/10.1109/TBDATA.2019.2940675

  71. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang, et al., Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64(1), 1–74 (2020)

    Google Scholar 

  72. Y. Gong, J. Wang, H. Yao, Distributed multi-agent empowered resource allocation in deep edge networks, in International Wireless Communications and Mobile Computing (IWCMC), Harbin (2021), pp. 974–979

    Google Scholar 

  73. C. Qiu, X. Wang, H. Yao, J. Du, F.R. Yu, S. Guo, Networking integrated cloud-edge-end in IoT: a blockchain-assisted collective Q-learning approach. IEEE Int. Things J. (2020). https://doi.org/10.1109/JIOT.2020.3007650

  74. C. Qiu, H. Yao, C. Jiang, S. Guo, F. Xu, Cloud computing assisted blockchain-enabled internet of things. IEEE Trans. Cloud Comput. (2019). https://doi.org/10.1109/TCC.2019.2930259

  75. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  76. J. Du, F.R. Yu, X. Chu, J. Feng, G. Lu, Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Trans. Vehic. Technol. 68(2), 1079–1092 (2018)

    Article  Google Scholar 

  77. W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, D.O. Wu, Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 12(9), 4569–4581 (2013)

    Article  Google Scholar 

  78. J. Zhang, X. Hu, Z. Ning, E.C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu, Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Int. Things J. 5(4), 2633–2645 (2017)

    Article  Google Scholar 

  79. Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  80. Z. Hong, H. Huang, S. Guo, W. Chen, Z. Zheng, QoS-aware cooperative computation offloading for robot swarms in cloud robotics. IEEE Trans. Vehic. Technol. 68(4), 4027–4041 (2019)

    Article  Google Scholar 

  81. Y. Liu, Y. Li, Y. Niu, D. Jin, Joint optimization of path planning and resource allocation in mobile edge computing. IEEE Trans. Mob. Comput. 19(9), 2129–2144 (2019)

    Article  Google Scholar 

  82. X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)

    Article  Google Scholar 

  83. Q. Li, H. Yao, T. Mai, C. Jiang, Y. Zhang, Reinforcement-learning-and belief-learning-based double auction mechanism for edge computing resource allocation. IEEE Int. Things J. 7(7), 5976–5985 (2019)

    Article  Google Scholar 

  84. C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8), 4924–4938 (2017)

    Article  Google Scholar 

  85. J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, Y. Qian, Distributed Q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE Trans. Ind. Inform. 16(4), 2756–2764 (2019)

    Article  Google Scholar 

  86. J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Vehic. Technol. 68(8), 7944–7956 (2019)

    Article  Google Scholar 

  87. P. Si, Y. He, H. Yao, R. Yang, Y. Zhang, Dave: Offloading delay-tolerant data traffic to connected vehicle networks. IEEE Trans. Vehic. Technol. 65(6), 3941–3953 (2016)

    Article  Google Scholar 

  88. T.D. Burd, R.W. Brodersen, Processor design for portable systems. J. VLSI Signal Process. Syst. Signal Image Video Technol. 13(2–3), 203–221 (1996)

    Article  Google Scholar 

  89. J.M. Rabaey, A.P. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design Perspective (Pearson Education, Upper Saddle River, 2003)

    Google Scholar 

  90. C. Wang, F.R. Yu, C. Liang, Q. Chen, L. Tang, Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Trans. Vehic. Technol. 66(8), 7432–7445 (2017)

    Article  Google Scholar 

  91. C. You, K. Huang, H. Chae, B.-H. Kim, Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2016)

    Article  Google Scholar 

  92. B.-G. Chun, P. Maniatis, Augmented smartphone applications through clone cloud execution, in USENIX Workshop on Hot Topics in Operating Systems. (HoTOS), Monte Veritłd’ (2009), pp. 8–11

    Google Scholar 

  93. Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, H., Guizani, M. (2023). Mobile Edge Computing Enabled Intelligent IoT. In: Intelligent Internet of Things Networks . Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26987-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26987-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26986-8

  • Online ISBN: 978-3-031-26987-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics