Skip to main content

Intelligent Traffic Control

  • Chapter
  • First Online:
Intelligent Internet of Things Networks

Part of the book series: Wireless Networks ((WN))

  • 259 Accesses

Abstract

Whether in a wired network or a wireless network, how to carry out effective and reliable traffic control is always discussed. However, most of the solutions to this problem rely heavily on manual processes. In order to solve this problem, in this chapter, we apply several artificial intelligence approaches to network traffic control. First, we introduce a social-based mechanism in the routing design of delay-tolerant network (DTN) and propose a cooperative multi-agent reinforcement learning (termed as QMIX) aided routing algorithm adopting centralized training and distributed execution learning paradigm. Then, in traditional network, we propose a new identity for networking routers—vectors, and a new routing principle based on these vectors and neural network is designed accordingly. In addition, we construct a jitter graph-based network model as well as a Poisson process-based traffic model in the context of 5G mobile networks and design a QoS-oriented adaptive routing scheme based on DRL. Finally, based on the SDN architecture, we propose a pair of machine learning aided load balance routing schemes considering the queue utilization (QU), which divide the routing process into three steps, namely the dimension reduction, and the QU prediction as well as the load balance routing. Extensive simulation results show that these traffic control methods have significant performance advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Han, H. Yao, T. Mai, N. Zhang, M. Guizani, QMIX aided routing in social-based delay-tolerant networks. IEEE Trans. Veh. Technol. 71(2), 1952–1963 (2021)

    Article  Google Scholar 

  2. H. Yao, H. Liu, P. Zhang, S. Wu, C. Jiang, S. Guo, A learning-based approach to intra-domain QoS routing. IEEE Trans. Veh. Technol. 69(6), 6718–6730 (2020)

    Article  Google Scholar 

  3. X. Yuan, H. Yao, J. Wang, T. Mai, M. Guizani, Artificial intelligence empowered QoS-oriented network association for next-generation mobile networks. IEEE Trans. Cogn. Commun. Netw. 7(3), 856–870 (2021)

    Article  Google Scholar 

  4. H. Yao, X. Yuan, P. Zhang, J. Wang, C. Jiang, M. Guizani, Machine learning aided load balance routing scheme considering queue utilization. IEEE Trans. Veh. Technol. 68(8), 7987–7999 (2019)

    Article  Google Scholar 

  5. L. Rashidi, R. Entezari-Maleki, D. Chatzopoulos, P. Hui, K.S. Trivedi, A. Movaghar, Performance evaluation of epidemic content retrieval in DTNs with restricted mobility. IEEE Trans. Netw. Serv. Manag. 16(2), 701–714 (2019)

    Article  Google Scholar 

  6. C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in Proceedings WMCSA’99 of the Second IEEE Workshop on Mobile Computing Systems and Applications (1999), pp. 90–100

    Google Scholar 

  7. S.M. Tornell, C.T. Calafate, J. Cano, P. Manzoni, DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutorials 17(2), 868–887 (2015)

    Article  Google Scholar 

  8. H. Yao, T. Mai, C. Jiang, L. Kuang, S. Guo, AI routers & network mind: a hybrid machine learning paradigm for packet routing. IEEE Comput. Intell. Mag. 14(4), 21–30 (2019)

    Article  Google Scholar 

  9. T. Spyropoulos, K. Psounis, C. Raghavendra, Spray and wait: an efficient routing scheme for intermittently connected mobile networks, in Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking (2005)

    Google Scholar 

  10. A. Lindgren, A. Doria, O. Schelen, Probabilistic routing in intermittently connected networks, in 1st International Workshop on Service Assurance with Partial Intermittent Resources, Fortaleza, BRAZIL, AUG 01-06, (2004), vol. 3126 (2004), pp. 239–254

    Google Scholar 

  11. H. Dubois-Ferrière, M. Grossglauser, M. Vetterli, Age matters: efficient route discovery in mobile Ad hoc networks using encounter ages, in MobiHoc ’03 (2003)

    Google Scholar 

  12. Y. Zhu, B. Xu, X. Shi, Y. Wang, A survey of social-based routing in delay tolerant networks: positive and negative social effects. IEEE Commun. Surv. Tutorials 15(1), 387–401 (2013)

    Article  Google Scholar 

  13. M. Xiao, J. Wu, L. Huang, Community-aware opportunistic routing in mobile social networks. IEEE Trans. Comput. 63(7), 1682–1695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: social-based forwarding in delay-tolerant networks. IEEE Trans. Mob. Comput. 10(11), 1576–1589 (2011)

    Article  Google Scholar 

  15. J. Tao, H. Wu, S. Shi, J. Hu, Y. Gao, Contacts-aware opportunistic forwarding in mobile social networks: a community perspective, in 2018 IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6

    Google Scholar 

  16. P. Sunehag, G. Lever, A. Gruslys, W.M. Czarnecki, V.F. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J.Z. Leibo, K. Tuyls et al., Value-decomposition networks for cooperative multi-agent learning based on team reward, in AAMAS (2018), pp. 2085–2087

    Google Scholar 

  17. J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. T. Rashid et al., Monotonic value function factorisation for deep multi-agent reinforcement learning. The. J. Mach. Learn. Res. 21(1), 7234–7284 (2020)

    MathSciNet  Google Scholar 

  19. S. Correia, A. Boukerche, R.I. Meneguette, An architecture for hierarchical software-defined vehicular networks. IEEE Commun. Mag. 55(7), 80–86 (2017)

    Article  Google Scholar 

  20. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  21. V.D. Blondel, et al., Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Google Scholar 

  22. Oliehoek, A. Frans, Amato, Christopher, A Concise Introduction to Decentralized POMDPs (Springer International Publishing, Berlin, 2016)

    Book  MATH  Google Scholar 

  23. M.J. Hausknecht, P. Stone, Deep recurrent q-learning for partially observable MDPs, in AAAI Fall Symposia (2015)

    Google Scholar 

  24. A. Keränen, J. Ott, T. Kärkkäinen, The ONE simulator for DTN protocol evaluation, in SIMUTools ’09: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, New York (ICST, 2009)

    Google Scholar 

  25. J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A, Chaintreau, CRAWDAD dataset cambridge/haggle (v. 2009). Downloaded from https://crawdad.org/cambridge/haggle/2009 (2009)

  26. V. Mnih, et al., Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  27. Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani, State-of-the-art deep learning: evolving machine intelligence toward tomorrows intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  28. B. Mao, Z.M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani, Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning. IEEE Trans. Comput. 66(11), 1946–1960 (2017)

    MATH  Google Scholar 

  29. B. Mao, Z.M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani, A tensor based deep learning technique for intelligent packet routing, in GLOBECOM 2017 – 2017 IEEE Global Communications Conference (2017), pp. 1–6

    Google Scholar 

  30. H. Yao, X. Yuan, P. Zhang, J. Wang, J. Chunxiao, M. Guizani, Machine learning aided load balance routing scheme considering queue utilization. IEEE Trans. Veh. Technol. 1–1 (2019)

    Google Scholar 

  31. F. Tang, et al., An intelligent traffic load prediction-based adaptive channel assignment algorithm in SDN-IoT: a deep learning approach. IEEE Internet Things J. 5(6), 5141–5154 (2018)

    Article  Google Scholar 

  32. F. Zhao, G. Zeng, K. Lu, EnLSTM-WPEO: short-term traffic flow prediction by ensemble LSTM, NNCT weight integration, and population extremal optimization. IEEE Trans. Veh. Technol. 69(1), 101–113 (2020)

    Article  Google Scholar 

  33. F. Tang, B. Mao, Z.M. Fadlullah, N. Kato, Deep spatiotemporal partially overlapping channel allocation: joint CNN and activity vector approach, in 2018 IEEE Global Communications Conference (GLOBECOM) (2018), pp. 1–6

    Google Scholar 

  34. Z. Zhang, Y. Li, C. Huang, Q. Guo, C. Yuen, Y. L. Guan, DNN-aided block sparse bayesian learning for user activity detection and channel estimation in grant-free non-orthogonal random access. IEEE Trans. Veh. Technol. 68(12), 12 000–12 012 (2019)

    Google Scholar 

  35. J. Wang, C. Jiang, H. Zhang, Y. Ren, K. Chen, L. Hanzo, Thirty years of machine learning: the road to pareto-optimal wireless networks. IEEE Commun. Surv. Tutorials 1–1 (2020)

    Google Scholar 

  36. Q. Yang, T. Jiang, N.C. Beaulieu, J. Wang, C. Jiang, S. Mumtaz, Z. Zhou, Heterogeneous semi-blind interference alignment in finite-SNR networks with fairness consideration. IEEE Trans. Wirel. Commun. 1–1 (2020)

    Google Scholar 

  37. C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, L. Hanzo, Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2017)

    Article  Google Scholar 

  38. K. Gai, M. Qiu, H. Zhao, Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. J. Parallel Distrib. Comput. 111, 126–135 (2018)

    Article  Google Scholar 

  39. H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S.H. Ahmed, A.K. Bashir, Learning-based context-aware resource allocation for edge computing-empowered industrial IoT. IEEE Internet Things J. 1–1 (2019)

    Google Scholar 

  40. H. Yao, M. Li, J. Du, P. Zhang, C. Jiang, Z. Han, Artificial intelligence for information-centric networks. IEEE Commun. Mag. 57(6), 47–53 (2019)

    Article  Google Scholar 

  41. Z. Xiong, Y. Zhang, N.C. Luong, D. Niyato, P. Wang, N. Guizani, The best of both worlds: a general architecture for data management in blockchain-enabled internet-of-things. IEEE Netw. 34(1), 166–173 (2020)

    Article  Google Scholar 

  42. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in blockchain-based industrial internet of things. IEEE Trans. Ind. Inform. 15(6), 3602–3609 (2019)

    Article  Google Scholar 

  43. H. Yao, T. Mai, C. Jiang, L. Kuang, S. Guo, AI routers network mind: a hybrid machine learning paradigm for packet routing. IEEE Comput. Intell. Mag. 14(4), 21–30 (2019)

    Article  Google Scholar 

  44. H. Yao, X. Chen, M. Li, P. Zhang, L. Wang, A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing 284, 1–9 (2018)

    Article  Google Scholar 

  45. X. Liao et al., A model-driven deep reinforcement learning heuristic algorithm for resource allocation in ultra-dense cellular networks. IEEE Trans. Veh. Technol. 69(1), 983–997 (2019)

    Article  MathSciNet  Google Scholar 

  46. K. Gai, M. Qiu, Reinforcement learning-based content-centric services in mobile sensing. IEEE Netw. 32(4), 34–39 (2018)

    Article  Google Scholar 

  47. K. Gai, K. Xu, Z. Lu, M. Qiu, L. Zhu, Fusion of cognitive wireless networks and edge computing. IEEE Wirel. Commun. 26(3), 69–75 (2019)

    Article  Google Scholar 

  48. C. Xu, K. Wang, P. Li, R. Xia, S. Guo, M. Guo, Renewable energy-aware big data analytics in geo-distributed data centers with reinforcement learning. IEEE Trans. Netw. Sci. Eng. 1–1 (2018)

    Google Scholar 

  49. J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, Y. Qian, Distributed q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE Trans. Ind. Inform. 16(4), 2756–2764 (2020)

    Article  Google Scholar 

  50. Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, L. Wang, Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 14(2), 44–52 (2019)

    Article  Google Scholar 

  51. W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications. Preprint. arXiv:1709.05584 (2017)

    Google Scholar 

  52. S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph representations, in Thirtieth AAAI Conference on Artificial Intelligence (2016), pp. 1145–1152

    Google Scholar 

  53. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in Advances in Neural Information Processing Systems (2017), pp. 1025–1035

    Google Scholar 

  54. M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in International Conference on Machine Learning (2016), pp. 2014–2023

    Google Scholar 

  55. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907 (2016)

    Google Scholar 

  56. B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2014), pp. 701–710

    Google Scholar 

  57. A. Grover, J. Leskovec, node2vec: scalable feature learning for networks, in ACM Sigkdd International Conference on Knowledge Discovery & Data Mining (2016), pp. 855–864

    Google Scholar 

  58. H. Pan, H. Yao, T. Mai, N. Zhang, Y. Liu, Scalable traffic control using programmable data planes in a space information network. IEEE Netw. 35(4), 35–41 (2021)

    Article  Google Scholar 

  59. H. Yao, H. Liu, P. Zhang, S. Wu, C. Jiang, S. Guo, An intelligent approach to energy efficient transportation and QoS routing, in ICC 2019 – 2019 IEEE International Conference on Communications (ICC) (2019), pp. 1–6

    Google Scholar 

  60. J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  61. T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  62. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. Preprint. arXiv:1412.6980 (2014)

    Google Scholar 

  63. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Google Scholar 

  64. S. Suresh, S.N. Omkar, V. Mani, Parallel implementation of back-propagation algorithm in networks of workstations. IEEE Trans. Parallel Distrib. Syst. 16(1), 24–34 (2005)

    Article  Google Scholar 

  65. A. Steger, N.C. Wormald, Generating random regular graphs quickly. Comb. Probab. Comput. 8(4), 377–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. J.H. Kim, V.H. Vu, Generating random regular graphs, in ACM Symposium on Theory of Computing (2003), pp. 213–222

    Google Scholar 

  67. C. Jiang, Y. Chen, Y. Ren, K.J.R. Liu, Maximizing network capacity with optimal source selection: a network science perspective. IEEE Signal Process Lett. 22(7), 938–942 (2015)

    Article  Google Scholar 

  68. S.S. Chen, K. Nahrstedt, On finding multi-constrained paths, in 1998 IEEE International Conference on Communications, 1998. ICC 98. Conference Record, vol. 2 (IEEE, Piscataway, 1998), pp. 874–879

    Google Scholar 

  69. T. Korkmaz, M. Krunz, Multi-constrained optimal path selection, in IEEE INFOCOM, vol. 2, no. April. Citeseer (2001), pp. 834–843

    Google Scholar 

  70. P. Khadivi, S. Samavi, T.D. Todd, Multi-constraint Qos routing using a new single mixed metrics. J. Netw. Comput. Appl. 31(4), 656–676 (2008)

    Article  Google Scholar 

  71. G. Cheng, N. Ansari, A new heuristics for finding the delay constrained least cost path, in Global Telecommunications Conference, 2003. GLOBECOM ’03., vol. 7 (IEEE, Piscataway, 2003), pp. 3711–3715

    Google Scholar 

  72. A. Jüttner, B. Szviatovski, I. Mécs, Z. Rajkó, Lagrange relaxation based method for the Qos routing problem, in Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 2 (2001), pp. 859–868

    Google Scholar 

  73. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in blockchain-based industrial internet of things. IEEE Trans. Ind. Inform. 15(6), 3602–3609 (2019)

    Article  Google Scholar 

  74. F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game-based computation offloading in social and cognitive industrial internet of things. IEEE Trans. Ind. Inform. 16(8), 5444–5455 (2020)

    Article  Google Scholar 

  75. J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, Y. Qian, Distributed q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE Trans. Ind. Inform. 16(4), 2756–2764 (2020)

    Article  Google Scholar 

  76. J.W. Guck, A. Van Bemten, M. Reisslein, W. Kellerer, Unicast QoS routing algorithms for SDN: a comprehensive survey and performance evaluation. IEEE Commun. Surv. Tutorials 20(1), 388–415 (2018)

    Article  Google Scholar 

  77. H. Yao, M. Li, J. Du, P. Zhang, C. Jiang, Z. Han, Artificial intelligence for information-centric networks. IEEE Commun. Mag. 57(6), 47–53 (2019)

    Article  Google Scholar 

  78. J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, L. Hanzo, Thirty years of machine learning: the road to pareto-optimal wireless networks. IEEE Commun. Surv. Tutorials 22(3), 1472–1514 (2020)

    Article  Google Scholar 

  79. K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  80. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  81. B.A.A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutorials 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  82. C. Yang, J. Li, A. Anpalagan, M. Guizani, Joint power coordination for spectral-and-energy efficiency in heterogeneous small cell networks: a bargaining game-theoretic perspective. IEEE Trans. Wirel. Commun. 15(2), 1364–1376 (2016)

    Article  Google Scholar 

  83. R.W. Heath, M. Kountouris, T. Bai, Modeling heterogeneous network interference using poisson point processes. IEEE Trans. Signal Process. 61(16), 4114–4126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  84. C. Yang, Y. Yao, Z. Chen, B. Xia, Analysis on cache-enabled wireless heterogeneous networks. IEEE Trans. Wirel. Commun. 15(1), 131–145 (2016)

    Article  Google Scholar 

  85. A. Bashandy, E. Chong, A. Ghafoor, Network modeling and jitter control for multimedia communication over broadband network, in IEEE International Conference on Computer Communications, New York, vol. 2 (1999), pp. 559–566

    Google Scholar 

  86. M. Abou-El-Ata, A. Hariri, The M/M/c/N queue with balking and reneging. Comput. Oper. Res. 19(8), 713–716 (1992)

    Article  MATH  Google Scholar 

  87. Z. Rongcai, Z. Shuo, Network traffic generation: a combination of stochastic and self-similar, in International Conference on Advanced Computer Control, Shenyang (2010), pp. 171–175

    Google Scholar 

  88. N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, Joint optimization of user association and dynamic TDD for ultra-dense networks, in IEEE INFOCOM 2018 – IEEE Conference on Computer Communications, Honolulu (2018), pp. 2681–2689

    Google Scholar 

  89. Y. Wang, H.H. Yang, Q. Zhu, T.Q.S. Quek, Analysis of packet throughput in spatiotemporal hetnets with scheduling and various traffic loads. IEEE Wirel. Commun. Lett. 9(1), 95–98 (2020)

    Article  Google Scholar 

  90. K. Wang, Optimal control of an M/E/k/1 queueing system with removable service station subject to breakdowns. J. Oper. Res. Soc. 48(9), 936–942 (1997)

    Article  MATH  Google Scholar 

  91. A. El-Naggar, A. Shalaby, Biomimicry to network on chip: router heart rate, in 2015 27th International Conference on Microelectronics (ICM), Casablanca (2015), pp. 162–165

    Google Scholar 

  92. M. Zhang, Model analysis of risk queuing and its application in port bottlenecks management, in 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu (2017), pp. 1009–1013

    Google Scholar 

  93. A.R. Bashandy, E.K.P. Chong, A. Ghafoor, Generalized quality-of-service routing with resource allocation. IEEE J. Select. Areas Commun. 23(2), 450–463 (2005)

    Article  Google Scholar 

  94. C. Meister, R. Cotterell, T. Vieira, If beam search is the answer, what was the question? in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics (2020), pp. 2173–2185

    Google Scholar 

  95. J.A. Boyan, M.L. Littman, Packet routing in dynamically changing networks: a reinforcement learning approach, in Proceedings of the 6th International Conference on Neural Information Processing Systems (Morgan Kaufmann Publishers Inc., San Francisco, 1993), pp. 671–678

    Google Scholar 

  96. Y. Li, Deep reinforcement learning: an overview. Computing Research Repository. abs/1701.07274 (2017)

    Google Scholar 

  97. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning. Comput. Sci. 8(6), A187 (2015)

    Google Scholar 

  98. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  99. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  100. Y. Zhong, M. Haenggi, T.Q.S. Quek, W. Zhang, On the stability of static poisson networks under random access. IEEE Trans. Commun. 64(7), 2985–2998 (2016)

    Article  Google Scholar 

  101. S. Henna, M. Sajeel, F. Hussain, M. Asfand-e yar, M. Tauqir, A fair contention access scheme for low-priority traffic in wireless body area networks. Sensors 17(9), 1931 (2017)

    Google Scholar 

  102. Y.R.B. Al-Mayouf, N.F. Abdullah, O.A. Mahdi, S. Khan, M. Ismail, M. Guizani, S.H. Ahmed, Real-time intersection-based segment aware routing algorithm for urban vehicular networks. IEEE Trans. Intell. Transport. Syst. 19(7), 1–1 (2018)

    Article  Google Scholar 

  103. P.A. Humblet, Another adaptive distributed shortest path algorithm. IEEE Trans. Commun. 39(6), 995–1003 (2002)

    Article  MATH  Google Scholar 

  104. S. Vutukury, J.J. Garcia-Luna-Aceves, MDVA: a distance-vector multipath routing protocol, in IEEE International Conference on Computer Communications (INFOCOM), Anchorage, vol. 1 (2001), pp. 557–564

    Google Scholar 

  105. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  106. L. Zou, M. Lu, Z. Xiong, A distributed algorithm for the dead end problem of location based routing in sensor networks. IEEE Trans. Veh. Technol. 54(4), 1509–1522 (2005)

    Article  Google Scholar 

  107. M.H. Eiza, T. Owens, Q. Ni, Q. Shi, Situation-aware QoS routing algorithm for vehicular ad hoc networks. IEEE Trans. Veh. Technol. 64(12), 5520–5535 (2015)

    Article  Google Scholar 

  108. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman & Co., New York, 1979)

    MATH  Google Scholar 

  109. Z. Wang, J. Crowcroft, Quality-of-service routing for supporting multimedia applications. IEEE J, Select. Areas Commun. 14(7), 1228–1234 (1996)

    Google Scholar 

  110. L. Hanzo, R. Tafazolli, A survey of QoS routing solutions for mobile ad hoc networks. IEEE Commun. Surv. Tutorials 9(2), 50–70 (2007)

    Article  Google Scholar 

  111. Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, A. Sprintson, Algorithms for computing QoS paths with restoration. IEEE/ACM Trans. Netw. 13(3), 648–661 (2005)

    Article  Google Scholar 

  112. H. Chang, X. Yin, H. Yao, J. Wang, R. Gao, J. An, L. Hanzo, Low-complexity adaptive optics aided orbital angular momentum based wireless communications. IEEE Trans. Veh. Technol. 70(8), 7812–7824 (2021)

    Article  Google Scholar 

  113. R. Battiti, A. Bertossi, D. Cavallaro, A randomized saturation degree heuristic for channel assignment in cellular radio networks. IEEE Trans. Veh. Technol. 50(2), 364–374 (1999).

    Article  Google Scholar 

  114. B. Turkovic, F. Kuipers, N. van Adrichem, K. Langendoen, Fast network congestion detection and avoidance using p4, in Proceedings of the 2018 Workshop on Networking for Emerging Applications and Technologies, New York (2018), pp. 45–51

    Google Scholar 

  115. H.S. Kim, H. Kim, J. Paek, S. Bahk, Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Trans. Mob. Comput. 16(4), 964–979 (2017)

    Article  Google Scholar 

  116. H.F. Salama, D.S. Reeves, Y. Viniotis, A distributed algorithm for delay-constrained unicast routing, in IEEE International Conference on Computer Communications (INFOCOM), Kobe, vol. 1 (1997), pp. 84–91

    Google Scholar 

  117. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in International Conference on Learning Representations. abs/1412.6980 (2014)

    Google Scholar 

  118. H.D. Neve, P.V. Mieghem, A multiple quality of service routing algorithm for PNNI, in ATM Workshop Proceedings, Fairfax (2002), pp. 324–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, H., Guizani, M. (2023). Intelligent Traffic Control. In: Intelligent Internet of Things Networks . Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26987-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26987-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26986-8

  • Online ISBN: 978-3-031-26987-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics