Skip to main content

Intelligent IoT Network Awareness

  • Chapter
  • First Online:
Intelligent Internet of Things Networks

Part of the book series: Wireless Networks ((WN))

  • 271 Accesses

Abstract

IoT devices are everywhere sensing, collecting, storing, and computing massive amounts of data. In the Internet of Things scenario, diversified services will generate traffic with different characteristics and put forward different business requirements. The application based on network intelligent awareness plays a key role in effectively managing network and deepening the control of network. In this chapter, we propose an end-to-end IoT traffic classification method relying on a deep learning aided capsule network for the sake of forming an efficient classification mechanism that integrates feature extraction, feature selection, and classification model. Then, we propose a hybrid IDS architecture and introduce a machine learning aided detection method. In addition, we model the time-series network traffic by the recurrent neural network (RNN). The attention mechanism is introduced for assisting network traffic classification in the form of the following two models: the attention aids long short term memory (LSTM) and the hierarchical attention network (HAN). Finally, we propose to design a machine learning-based in-network Distributed Denial of Service (DDoS) detection framework. Benefit from switch processing performance, the in-network mechanism could achieve high scalability and line speed performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Rectifier_(neural_networks).

  2. 2.

    https://www.tensorflow.org.

  3. 3.

    https://scikit-learn.org/stable/.

  4. 4.

    https://github.com/Microsoft/LightGBM.

References

  1. H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, Z. Han, Capsule network assisted IoT traffic classification mechanism for smart cities. IEEE Int. Things J. 6(5), 7515–7525 (2019)

    Article  Google Scholar 

  2. H. Yao, P. Gao, P. Zhang, J. Wang, C. Jiang, L. Lu, Hybrid intrusion detection system for edge-based iiot relying on machine-learning-aided detection. IEEE Netw. 33(5), 75–81 (2019)

    Article  Google Scholar 

  3. H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, S. Yu, Identification of encrypted traffic through attention mechanism based long short term memory. IEEE Trans. Big Data 8, 241–252 (2019)

    Article  Google Scholar 

  4. W. He, Y. Liu, H. Yao, T. Mai, N. Zhang, F.R. Yu, Distributed variational bayes-based in-network security for the Internet of Things. IEEE Int. Things J. 8(8), 6293–6304 (2020)

    Article  Google Scholar 

  5. Y. Kawamoto, N. Yamada, H. Nishiyama, N. Kato, Y. Shimizu, Y. Zheng, A feedback control based crowd dynamics management in IoT system. IEEE Int. Things J. 4, 1466–1476 (2017)

    Article  Google Scholar 

  6. Y. Kawamoto, H. Nishiyama, N. Kato, Y. Shimizu, A. Takahara, T. Jiang, Effectively collecting data for the location-based authentication in internet of things. IEEE Syst. J. 11, 1403–1411 (2017)

    Article  Google Scholar 

  7. S. Verma, Y. Kawamoto, Z.M. Fadlullah, H. Nishiyama, N. Kato, A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutor. 19, 1457–1477 (2017)

    Article  Google Scholar 

  8. T. Wang, J. Tan, W. Ding, Y. Zhang, F. Yang, J. Song, Z. Han, Inter-community detection scheme for social Internet of Things: a compressive sensing over graphs approach. IEEE Int. Things J. 5, 1–1 (2018)

    Google Scholar 

  9. J. Ni, K. Zhang, X. Lin, X.S. Shen, Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20, 601–628 (2018)

    Article  Google Scholar 

  10. C.L. Hsu, C.C. Lin, An empirical examination of consumer adoption of internet of things services: network externalities and concern for information privacy perspectives. Comput. Human Behav. 62, 516–527 (2016)

    Article  Google Scholar 

  11. D. Ventura, D. Casado-Mansilla, J. López-de Armentia, P. Garaizar, D. López-de Ipina, V. Catania, ARIIMA: a real IoT implementation of a machine-learning architecture for reducing energy consumption, in International Conference on Ubiquitous Computing and Ambient Intelligence, (Belfast, UK) (2014), pp. 444–451

    Google Scholar 

  12. T. Yonezawa, L. Gurgen, D. Pavia, M. Grella, H. Maeomichi, ClouT: leveraging cloud computing techniques for improving management of massive IoT data, in IEEE International Conference on Service-Oriented Computing and Applications, (Washington, DC) (2014), pp. 324–327

    Google Scholar 

  13. Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, C. Liu, An efficient index for massive IoT data in cloud environment, in Proceedings of the 21st ACM International Conference on Information and Knowledge Management (2012) pp. 2129–2133

    Google Scholar 

  14. Z. Ding, J. Xu, Q. Yang, SeaCloudDM: a database cluster framework for managing and querying massive heterogeneous sensor sampling data. J. Supercomput. 66, 1260–1284 (2013)

    Article  Google Scholar 

  15. J. Camhi, Former Cisco CEO John Chambers predicts 500 billion connected devices by 2025. Business Insider (2015)

    Google Scholar 

  16. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)

    Article  Google Scholar 

  17. S. Chen, H. Xu, D. Liu, B. Hu, A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Int. Things J. 1, 349–359 (2014)

    Article  Google Scholar 

  18. D. Singh, G. Tripathi, A.J. Jara, A survey of internet-of-things: Future vision, architecture, challenges and services,” in IEEE World Forum on Internet of Things (WF-IoT), (Seoul, South Korea) (2014), pp. 287–292

    Google Scholar 

  19. J. Zheng, D. Simplot-Ryl, C. Bisdikian, H.T. Mouftah, The internet of things [guest editorial]. IEEE Commun. Mag. 49, 30–31 (2011)

    Article  Google Scholar 

  20. Y. Li, Q. Zhang, R. Gao, X. Xin, H. Yao, F. Tian, M. Guizani, An elastic resource allocation algorithm based on dispersion degree for hybrid requests in satellite optical networks. IEEE Int. Things J. 9(9), 6536–6549 (2021)

    Article  Google Scholar 

  21. W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, Malware traffic classification using convolutional neural network for representation learning, in IEEE International Conference on Information Networking, (Da Nang, Vietnam) (2017), pp. 712–717

    Google Scholar 

  22. S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in Advances in Neural Information Processing Systems (2017), pp. 3856–3866

    Google Scholar 

  23. J. Gong, X. Qiu, S. Wang, X. Huang, Information aggregation via dynamic routing for sequence encoding (2018). arXiv:1806.01501

    Google Scholar 

  24. Q. Liang, X. Wang, X. Tian, F. Wu, Q. Zhang, Two-dimensional route switching in cognitive radio networks: a game-theoretical framework. IEEE/ACM Trans. Netw. 23, 1053–1066 (2015)

    Article  Google Scholar 

  25. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  26. X. Tian, Y. Cheng, B. Liu, Design of a scalable multicast scheme with an application-network cross-layer approach. IEEE Trans. Multimedia 11, 1160–1169 (2009)

    Article  Google Scholar 

  27. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al., Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  28. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  29. T. Mai, H. Yao, J. Xu, N. Zhang, Q. Liu, S. Guo, Automatic double-auction mechanism for federated learning service market in Internet of Things. IEEE Trans. Netw. Sci. Eng. 9, 3123–3135 (2022)

    Article  MathSciNet  Google Scholar 

  30. F. Wang, H. Yao, Q. Zhang, J. Wang, R. Gao, D. Guo, M. Guizani, Dynamic distributed multi-path aided load balancing for optical data center networks. IEEE Trans. Netw. Ser. Manag. 19, 991–1005 (2021)

    Article  Google Scholar 

  31. S. Mukherjee, N. Sharma, Intrusion detection using naive Bayes classifier with feature reduction. Procedia Technol. 4, 119–128 (2012)

    Article  Google Scholar 

  32. B. Subba, S. Biswas, S. Karmakar, Intrusion detection systems using linear discriminant analysis and logistic regression, in Annual IEEE India Conference (INDICON), (New Delhi, India) (2015), pp. 1–6

    Google Scholar 

  33. J. Zhang, M. Zulkernine, A hybrid network intrusion detection technique using random forests, in The First International Conference on Availability, Reliability and Security, vol. 2006, (Vienna, Austria) (2006), pp. 262–269

    Google Scholar 

  34. N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupe, et al., Deep android malware detection, in The Seventh ACM on Conference on Data and Application Security and Privacy, (Tempe, AZ) (2017), pp. 301–308

    Google Scholar 

  35. W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, M. Zhu, HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2018)

    Article  Google Scholar 

  36. A. Chawla, B. Lee, S. Fallon, P. Jacob, Host based intrusion detection system with combined CNN/RNN model, in Proceedings of Second International Workshop on AI in Security (2019), pp. 149–158

    Google Scholar 

  37. L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, M. Guizani, Security in mobile edge caching with reinforcement learning. IEEE Wirel. Commun. 25, 116–122 (2018)

    Article  Google Scholar 

  38. M. Min, D. Xu, L. Xiao, Y. Tang, D. Wu, Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Vehic. Technol. 68, 1930–1941 (2019)

    Article  Google Scholar 

  39. D. Oh, D. Kim, W.W. Ro, A malicious pattern detection engine for embedded security systems in the internet of things. Sensors 14, 24188–24211 (2014)

    Article  Google Scholar 

  40. L. Wallgren, S. Raza, T. Voigt, Routing attacks and countermeasures in the RPL-based internet of things. Int. J. Distrib. Sensor Netw. 9, 794326 (2013)

    Article  Google Scholar 

  41. A. Le, J. Loo, K.K. Chai, M. Aiash, A specification-based IDS for detecting attacks on RPL-based network topology. Information 7, 25 (2016)

    Article  Google Scholar 

  42. K. Wang, M. Du, D. Yang, C. Zhu, J. Shen, Y. Zhang, Game-theory-based active defense for intrusion detection in cyber-physical embedded systems. ACM Trans. Embed. Comput. Syst. 16, 18:1–18:21 (2016)

    Google Scholar 

  43. G. Giambene, S. Kota, P. Pillai, Satellite-5g integration: a network perspective. IEEE Netw. 32, 25–31 (2018)

    Article  Google Scholar 

  44. K. Wang, M. Du, Y. Sun, A. Vinel, Y. Zhang, Attack detection and distributed forensics in machine-to-machine networks. IEEE Netw. 30, 49–55 (2016)

    Article  Google Scholar 

  45. K. Wang, Y. Wang, Y. Sun, S. Guo, J. Wu, Green industrial Internet of Things architecture: an energy-efficient perspective. IEEE Commun. Mag. 54, 48–54 (2016)

    Article  Google Scholar 

  46. Z. Qin, H. Yao, T. Mai, D. Wu, N. Zhang, S. Guo, Multi-agent reinforcement learning aided computation offloading in aerial computing for the internet-of-things. IEEE Trans. Serv. Comput. (01), 1–12 (2022)

    Article  Google Scholar 

  47. K. Gai, M. Qiu, H. Zhao, Privacy-preserving data encryption strategy for big data in mobile cloud computing. IEEE Transactions on Big Data 7(4), 678–688 (2017)

    Google Scholar 

  48. Z. Cao, G. Xiong, Y. Zhao, Z. Li, L. Guo, A survey on encrypted traffic classification, in International Conference on Applications and Techniques in Information Security, (Berlin, Heidelberg) (2014), pp. 73–81

    Google Scholar 

  49. R. Alshammari, A.N. Zincir-Heywood, Investigating two different approaches for encrypted traffic classification, in 2008 Sixth Annual Conference on Privacy, Security and Trust (2008), pp. 156–166

    Google Scholar 

  50. R. Alshammari, A.N. Zincir-Heywood, Machine learning based encrypted traffic classification: Identifying SSH and Skype, in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications (2009), pp. 1–8

    Google Scholar 

  51. M. Dusi, A. Este, F. Gringoli, L. Salgarelli, Using GMM and SVM-based techniques for the classification of SSH-encrypted traffic, in 2009 IEEE International Conference on Communications (2009), pp. 1–6

    Google Scholar 

  52. Z. Wang, The applications of deep learning on traffic identification. BlackHat, USA (2015)

    Google Scholar 

  53. M. Lotfollahi, R.S.H. Zade, M.J. Siavoshani, M. Saberian, Deep packet: A novel approach for encrypted traffic classification using deep learning. Soft. Comput. 24(3), 1999–2012 (2020)

    Article  Google Scholar 

  54. W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traffic classification with one-dimensional convolution neural networks, in 2017 IEEE International Conference on Intelligence and Security Informatics (ISI) (2017), pp. 43–48

    Google Scholar 

  55. M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  56. W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, M. Zhu, Hast-ids: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2018)

    Article  Google Scholar 

  57. A.H. Lashkari, G. Draper-Gil, M.S.I. Mamun, A.A. Ghorbani, Characterization of encrypted and VPN traffic using time-related features, in Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), (Rome, Italy) (2016), pp. 407–414

    Google Scholar 

  58. G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, Mobile encrypted traffic classification using deep learning, in 2018 Network Traffic Measurement and Analysis Conference (TMA) (2018), pp. 1–8

    Google Scholar 

  59. R. Li, X. Xiao, S. Ni, H. Zheng, S. Xia, Byte segment neural network for network traffic classification, in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (2018), pp. 1–10

    Google Scholar 

  60. A. Graves, Long Short-Term Memory (Springer, Berlin, 2012), pp. 37–45

    Google Scholar 

  61. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate (2014). arXiv preprint arXiv:1409.0473

    Google Scholar 

  62. Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (San Diego, CA) (2016), pp. 1480–1489

    Google Scholar 

  63. Y.-A. Chung, H.-T. Lin, and S.-W. Yang, Cost-aware pretraining for multiclass cost-sensitive deep learning (2015). arXiv preprint arXiv:1511.09337

    Google Scholar 

  64. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in blockchain-based industrial Internet of Things. IEEE Trans. Ind. Inf. 15(6), 3602–3609 (2019)

    Article  Google Scholar 

  65. C. Qiu, H. Yao, C. Jiang, S. Guo, F. Xu, Cloud computing assisted blockchain-enabled Internet of Things. IEEE Trans. Cloud Comput. 10, 247–257 (2019)

    Article  Google Scholar 

  66. R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, Internet of things (IoT) security: Current status, challenges and prospective measures, in 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST) (IEEE, Piscataway, 2015), pp. 336–341

    Google Scholar 

  67. H. Yao, H. Liu, P. Zhang, S. Wu, C. Jiang, S. Guo, A learning-based approach to intra-domain qos routing. IEEE Trans. Veh. Technol. 69(6), 6718–6730 (2020)

    Google Scholar 

  68. C. Qiu, H. Yao, F.R. Yu, F. Xu, C. Zhao, Deep q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks. IEEE Trans. Vehic. Technol. 68(6), 5871–5883 (2019)

    Article  Google Scholar 

  69. Q. Yan, F.R. Yu, Q. Gong, J. Li, Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 18(1), 602–622 (2016)

    Article  Google Scholar 

  70. F. Li, X. Xu, H. Yao, J. Wang, C. Jiang, S. Guo, Multi-controller resource management for software-defined wireless networks. IEEE Commun. Lett. 23(3), 506–509 (2019)

    Article  Google Scholar 

  71. F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game-based computation offloading in social and cognitive industrial Internet of Things. IEEE Trans. Ind. Inform. 16(8), 5444–5455 (2019)

    Article  Google Scholar 

  72. C. Qiu, F.R. Yu, H. Yao, C. Jiang, F. Xu, C. Zhao, Blockchain-based software-defined industrial Internet of Things: a dueling deep Q-learning approach. IEEE Int. Things J. 6(3), 4627–4639 (2018)

    Article  Google Scholar 

  73. H. Yao, T. Mai, X. Xu, P. Zhang, M. Li, Y. Liu, NetworkAI: An intelligent network architecture for self-learning control strategies in software defined networks. IEEE Int. Things J. 5(6), 4319–4327 (2018)

    Article  Google Scholar 

  74. H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, S. Guo, A continuous-decision virtual network embedding scheme relying on reinforcement learning. IEEE Trans. Netw. Service Manag. 17, 864–875 (2020)

    Article  Google Scholar 

  75. R. Bifulco, G. Rétvári, A survey on the programmable data plane: abstractions, architectures, and open problems, in 2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR) (IEEE, Piscataway, 2018), pp. 1–7

    Google Scholar 

  76. R. Harrison, Q. Cai, A. Gupta, J. Rexford, Network-wide heavy hitter detection with commodity switches, in Proceedings of the Symposium on SDN Research (2018), pp. 1–7

    Google Scholar 

  77. J. Liang, R. Liu, Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network, in 2015 8th International Congress on Image and Signal Processing (CISP) (IEEE, Piscataway, 2015), pp. 697–701

    Google Scholar 

  78. G. Karatas, O. Demir, O.K. Sahingoz, Deep learning in intrusion detection systems, in 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT) (IEEE, Piscataway, 2018), pp. 113–116

    Google Scholar 

  79. Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: an ensemble of autoencoders for online network intrusion detection (2018). Preprint arXiv:1802.09089

    Google Scholar 

  80. F.A. Khan, A. Gumaei, A. Derhab, A. Hussain, A novel two-stage deep learning model for efficient network intrusion detection. IEEE Access 7, 30373–30385 (2019)

    Article  Google Scholar 

  81. N. Shone, T.N. Ngoc, V.D. Phai, Q. Shi, A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 41–50 (2018)

    Article  Google Scholar 

  82. D. Li, L. Deng, M. Lee, H. Wang, IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning. Int. J. Inf. Manag. 49, 533–545 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, H., Guizani, M. (2023). Intelligent IoT Network Awareness. In: Intelligent Internet of Things Networks . Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26987-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26987-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26986-8

  • Online ISBN: 978-3-031-26987-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics