Skip to main content

Edge-assisted Transmission for 5G Enabled Industrial Network Systems

  • Chapter
  • First Online:
Advanced Wireless Technologies for Industrial Network Systems

Part of the book series: Wireless Networks ((WN))

  • 173 Accesses

Abstract

In industrial network systems, the system performance tightly relies on the sensing method, control strategy, and transmission scheme. Industrial network system is generally composed of spatially distributed sensors, actuators, and edge and/or remote estimators/controllers. Moreover, the sensing and control information are frequently exchanged over wireless. As a result, the transmission reliability and timeless directly affects the performance of industrial network systems. However, the harsh communication environment and scarce communication resource make it difficult to meet the transmission requirement requested by sensing and control applications. Therefore, it is crucial to investigate the advanced transmission scheme for estimation and control application in industrial control systems. In this chapter, we study the edge-assisted transmission for 5G enabled industrial network systems. In particular, a hierarchical sensing approach is investigated to meet the estimation accuracy requirement with limited communication resources. Moreover, an edge-assisted remote control architecture is proposed to integrate the sensing and control together with the information transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Gatsis, A. Ribeiro, G.J. Pappas, State-based communication design for wireless control systems, in Proceedings of the IEEE International Conference on Decision and Control, Las Vegas, Dec. 12–14 (2016)

    Google Scholar 

  2. X. He, Z. Wang, Y. Liu, D. Zhou, Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach. IEEE Trans. Ind. Inf. 9(3), 1670–1679 (2013)

    Article  Google Scholar 

  3. Y. Li, D.E. Quevedo, V. Lau, L. Shi, Optimal periodic transmission power schedules for remote estimation of ARMA processes. IEEE Trans. Signal Process. 61(24), 6164–6174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Deshmukh, B. Natarajan, A. Pahwa, State estimation over a lossy network in spatially distributed cyber-physical systems. IEEE Trans. Signal Process. 62(15), 3911–3923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Cao, P. Cheng, J. Chen, Y. Sun, An online optimization approach for control and communication codesign in networked cyber-physical systems. IEEE Trans. Ind. Inf. 9(1), 439–450 (2013)

    Article  Google Scholar 

  6. R.C. Luo, C.-C. Chang, Multisensor fusion and integration: a review on approaches and its applications in mechatronics. IEEE Trans. Ind. Inf. 8(1), 49–60 (2012)

    Article  MathSciNet  Google Scholar 

  7. S. Sun, Z. Deng, Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Liu, X. Wang, N.S.V. Rao, Fusion of state estimates over long-haul sensor networks under random delay and loss, in Proceedings of the IEEE International Conference on Computer Communications, Orlando, Mar. 25–30 (2012)

    Google Scholar 

  9. R. Caballero-Águila, I. García-Garrido, J. Linares-Pérez, Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements. Appl. Math. Comput. 226(1), 548–563 (2014)

    MATH  Google Scholar 

  10. S. Zhu, C. Chen, W. Li, B. Yang, X. Guan, Distributed optimal consensus filter for target tracking in heterogeneous sensor networks. IEEE Trans. Cybernet. 43(6), 1963–1976 (2013)

    Article  Google Scholar 

  11. J. Ma, S. Sun, Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts. Signal Process. 130, 268–278 (2017)

    Article  Google Scholar 

  12. B. Chen, G. Hu, D.W.C. Ho, L. Yu, Distributed covariance intersection fusion estimation for cyber-physical systems with communication constraints. IEEE Trans. Autom. Control 61(12), 4020–4026 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Zhu, Y.C. Soh, L. Xie, Distributed inference for relay-assisted sensor networks with intermittent measurements over fading channels. IEEE Trans. Signal Process. 64(3), 742–756 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Song, W. Zhang, L. Yu, Hierarchical fusion in clustered sensor networks with asynchronous local estimates. IEEE Signal Processing Lett. 21(12), 1506–1510 (2014)

    Article  Google Scholar 

  15. W. Zhang, B. Chen, M.Z.Q. Chen, Hierarchical fusion estimation for clustered asynchronous sensor networks. IEEE Trans. Autom. Control 61(10), 3064–3069 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Vitturi, F. Tramarin, L. Seno, Industrial wireless networks: the significance of timeliness in communication systems. IEEE Ind. Electron. Mag. 7(2), 40–51 (2013)

    Article  Google Scholar 

  17. M. Donkers, W. Heemels, N. Van de Wouw, L. Hetel, Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9), 2101–2115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.M.S. Pasand, M. Montazeri, Structural properties, LQG control and scheduling of a networked control system with bandwidth limitations and transmission delays. IEEE/CAA J. Automat. Sin. 55(8), 1781–1796 (2017)

    MATH  Google Scholar 

  19. B. Demirel, V. Gupta, D.E. Quevedo, M. Johansson, On the trade-off between communication and control cost in event-triggered dead-beat control. IEEE Trans. Autom. Control 62(6), 2973–2980 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Rehbinder, M. Sanfridson, Scheduling of a limited communication channel for optimal control. Automatica 40(3), 491–500 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Ren, R. Lu, J. Xiong, Y. Xu, Optimal estimation for discrete-time linear system with communication constraints and measurement quantization. IEEE Trans. Syst. Man Cybern. Syst. Hum. PP(99), 1–11 (2018)

    Google Scholar 

  22. S. Al-Areqi, D. Görges, S. Liu, Event-based networked control and scheduling codesign with guaranteed performance. Automatica 57, 128–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Heydari, Optimal codesign of control input and triggering instants for networked control systems using adaptive dynamic programming. IEEE Trans. Ind. Electron. 66(1), 482–490 (2018)

    Article  Google Scholar 

  24. F. Tramarin, A.K. Mok, S. Han, Real-time and reliable industrial control over wireless LANs: algorithms, protocols, and future directions. Proc. IEEE 107(6), 1027–1052 (2019)

    Article  Google Scholar 

  25. A.S. Leong, D.E. Quevedo, D. Dolz, S. Dey, Transmission scheduling for remote state estimation over packet dropping links in the presence of an eavesdropper. IEEE Trans. Autom. Control PP, 1–8 (2018)

    Google Scholar 

  26. J. Ding, S. Sun, J. Ma, N. Li, Fusion estimation for multi-sensor networked systems with packet loss compensation. Inf. Fusion 45, 138–149 (2019)

    Article  Google Scholar 

  27. B. Demirel, A. Ramaswamy, D.E. Quevedo, H. Karl, DEEPCAS: a deep reinforcement learning algorithm for control-aware scheduling. IEEE Control Syst. Lett. 2(4), 737–742 (2018)

    Article  MathSciNet  Google Scholar 

  28. Y. Li, J. Wu, T. Chen, Transmit power control and remote state estimation with sensor networks: a Bayesian inference approach. Automatica 97, 292–300 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Ren, Y. Zhang, R. Deng, N. Zhang, D. Zhang, X.S. Shen, Joint channel access and sampling rate control in energy harvesting cognitive radio sensor networks. IEEE Trans. Emerg. Top. Comput. 7(1), 149–161 (2016)

    Article  Google Scholar 

  30. G. Zhao, M.A. Imran, Z. Pang, Z. Chen, L. Li, Toward real-time control in future wireless networks: communication-control co-design. IEEE Commun. Mag. 57(2), 138–144 (2019)

    Article  Google Scholar 

  31. V.N. Swamy, S. Suri, P. Rigge, M. Weiner, G. Ranade, A. Sahai, B. Nikolić, Real-time cooperative communication for automation over wireless. IEEE Trans. Wirel. Commun. 16(11), 7168–7183 (2017)

    Article  Google Scholar 

  32. R. Urgaonkar, M.J. Neely, Delay-limited cooperative communication with reliability constraints in wireless networks. IEEE Trans. Inf. Theory 60(3), 1869–1882 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Bai, J. Jia, C.-X. Wang, D. Yuan, Performance analysis of SNR-based incremental hybrid decode-amplify-forward cooperative relaying protocol. IEEE Trans. Commun. 63(6), 2094–2106 (2015)

    Article  Google Scholar 

  34. B.D. Anderson, J.B. Moore, Optimal filtering. Englewood Cliffs 21, 22–95 (1979)

    MATH  Google Scholar 

  35. H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Ouyang, S.M. Asghari, A. Nayyar, Optimal local and remote controllers with unreliable communication, in IEEE Conference on Decision and Control (CDC), Las Vegas, Dec. 12–14 (2016)

    Google Scholar 

  37. J. Xu, Z. Zhong, B. Ai, Wireless powered sensor networks: collaborative energy beamforming considering sensing and circuit power consumption. IEEE Wirel. Commun. Lett. 5(4), 344–347 (2016)

    Article  Google Scholar 

  38. Y. Liu, Y. Dai, On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems. IEEE Trans. Signal Process. 62(3), 583–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Chen, J. Yan, N. Lu, Y. Wang, X. Yang, X. Guan, Ubiquitous monitoring for industrial cyber-physical systems over relay assisted wireless sensor networks. IEEE Trans. Emerg. Top. Comput. 3(3), 352–362 (2015)

    Article  Google Scholar 

  40. Q. Wang, J. Jiang, Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Commun. Surv. Tutorials 18(3), 2197–2219 (2016)

    Article  MathSciNet  Google Scholar 

  41. Y. Shi, J. Zhang, B. O’Donoghue, K.B. Letaief, Large-scale convex optimization for dense wireless cooperative networks. IEEE Trans. Signal Process. 63(18), 4729–4743 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, K. Siwiak, IEEE 802.15. 4a channel model-final report. IEEE, 2004 [Online]. Available http://www.ieee802.org/15/pub/TG4a.html

  43. Z. Irahhauten, G.J. Janssen, H. Nikookar, A. Yarovoy, L.P. Ligthart, UWB channel measurements and results for office and industrial environments, in Proceedings of the IEEE International Conference on Ultra-Wideband, Waltham, Sep. 24–27 (2006)

    Google Scholar 

  44. E. Tanghe, W. Joseph, L. Verloock, L. Martens, H. Capoen, K. Van Herwegen, W. Vantomme, The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz. IEEE Trans. Wirel. Commun. 7(7), 2740–2751 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyu, L., Guan, X., Cheng, N., Shen, X.S. (2023). Edge-assisted Transmission for 5G Enabled Industrial Network Systems. In: Advanced Wireless Technologies for Industrial Network Systems. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26963-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26963-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26962-2

  • Online ISBN: 978-3-031-26963-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics