Skip to main content

Sensing and Control Oriented Transmission for Industrial Network Systems

  • Chapter
  • First Online:
Advanced Wireless Technologies for Industrial Network Systems

Part of the book series: Wireless Networks ((WN))

  • 168 Accesses

Abstract

Internet of Things (IoT) provides a bridge between sensors, controllers, and actuators to enable the on-demand communication services for sensing and control applications in industrial network systems. In the considered industrial network system, the remote controller determines the control command based on the received sensing information from sensors over wireless networks and then disseminates the control commands to actuators in each control loop. As a result, the transmission performance directly effects the sensing accuracy and control stability. Unfortunately, the dynamic and lossy wireless channels make it challenging to guarantee the transmission reliability for sensing and control applications, especially in the harsh industrial environment. In this chapter, we study the transmission scheme design for the sensing and control applications in industrial network systems. On the one hand, a spatial diversity based cooperative transmission scheme is designed to effectively handle the contradiction between limited spectrum resource and mass sensing information. On the other hand, a beamforming based multi-point cooperative transmission scheme is designed to significantly enhance the transmission reliability of control information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Gatsis, M. Pajic, A. Ribeiro, G. J. Pappas, Opportunistic control over shared wireless channels. IEEE Trans. Autom. Control 60(12), 3140–3155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  3. C. Chen, S. Zhu, X. Guan, X. Shen, Wireless Sensor Networks: Distributed Consensus Estimation (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  4. N. Correia, A. Mazayev, G. Schutz, J. Martins, A. Barradas, Resource design in constrained networks for network lifetime increase. IEEE Internet Things J. 4(5), 1161–1623 (2017)

    Article  Google Scholar 

  5. S. Savazzi, V. Rampa, U. Spagnolini, Wireless cloud networks for the factory of things: connectivity modeling and layout design. IEEE Internet Things J. 1(2), 180–195 (2014)

    Article  Google Scholar 

  6. R. Giuliano, F. Mazzenga, A. Neri, A.M. Vegni, Security access protocols in IoT capillary networks. IEEE Internet Things J. 4(3), 645–657 (2017)

    Article  Google Scholar 

  7. Y. Guo, S. Li, Transmission probability condition for stabilisability of networked control systems. IET Control Theory Appl. 4(4), 672–682 (2010)

    Article  MathSciNet  Google Scholar 

  8. C. Ramesh, H. Sandberg, K.H. Johansson, Design of state-based schedulers for a network of control loops. IEEE Trans. Autom. Control 58(8), 1962–1975 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Liu, G. Pan, H. Zhang, M. Song, Hybrid decode-forward & amplify-forward relaying with non-orthogonal multiple access. IEEE Access 4, 4912–4921 (2016)

    Article  Google Scholar 

  10. Z. Bai, J. Jia, C.-X. Wang, D. Yuan, Performance analysis of SNR-based incremental hybrid decode-amplify-forward cooperative relaying protocol. IEEE Trans. Commun. 63(6), 2094–2106 (2015)

    Article  Google Scholar 

  11. Y. Jing, H. Jafarkhani, Network beamforming using relays with perfect channel information. IEEE Trans. Inf. Theory 55(6), 2499–2517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. V.C. Gungor, G.P. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)

    Article  Google Scholar 

  13. L. Lei, Y. Kuang, X. Shen, K. Yang, J. Qiao, Z. Zhong, Optimal reliability in energy harvesting industrial wireless sensor networks. IEEE Trans. Wirel. Commun. 15(8), 5399–5413 (2016)

    Article  Google Scholar 

  14. U. Doe, Industrial wireless technology for the 21st century. Report, Technology Foresight, Winter (2004)

    Google Scholar 

  15. M.G. Cea, G.C. Goodwin, Stabilization of systems over bit-rate-constrained networked control architectures. IEEE Trans. Ind. Inf. 9(1), 357–364 (2013)

    Article  Google Scholar 

  16. B. Chen, L. Yu, W. Zhang, A. Liu, Robust information fusion estimator for multiple delay-tolerant sensors with different failure rates. IEEE Trans. Circuits Syst. Regul. Pap. 60(2), 401–414 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. D.E. Quevedo, A. Ahlén, A.S. Leong, S. Dey, On Kalman filtering over fading wireless channels with controlled transmission powers. Automatica 48(7), 1306–1316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Kawamoto, N. Yamada, H. Nishiyama, N. Kato, Y. Shimizu, Y. Zheng, A feedback control-based crowd dynamics management in IoT system. IEEE Internet Things J. 4(5), 1466–1476 (2017)

    Article  Google Scholar 

  19. L. Shi, P. Cheng, J. Chen, Optimal periodic sensor scheduling with limited resources. IEEE Trans. Autom. Control 56(9), 2190–2195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Gatsis, A. Ribeiro, G.J. Pappas, Optimal power management in wireless control systems. IEEE Trans. Autom. Control 59(6), 1495–1510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Cao, X. Zhou, L. Liu, Y. Cheng, Energy-efficient spectrum sensing for cognitive radio enabled remote state estimation over wireless channels. IEEE Trans. Wirel. Commun. 14(4), 2058–2071 (2015)

    Article  Google Scholar 

  22. D.E. Quevedo, A. Ahlén, J. Ostergaard, Energy efficient state estimation with wireless sensors through the use of predictive power control and coding. IEEE Trans. Signal Process. 58(9), 4811–4823 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Dolz, D. Quevedo, I. Peñarrocha, A. Leong, R. Sanchis, Co-design of jump estimators and transmission policies for wireless multi-hop networks with fading channels. Automatica 81, 68–74 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.A. Mahmood, W.K. Seah, I. Welch, Reliability in wireless sensor networks: a survey and challenges ahead. Comput. Netw. 79, 166–187 (2015)

    Article  Google Scholar 

  25. Y. Sadi, S.C. Ergen, Energy and delay constrained maximum adaptive schedule for wireless networked control systems. IEEE Trans. Wirel. Commun. 14(7), 3738–3751 (2015)

    Article  Google Scholar 

  26. V.N. Swamy, S. Suri, P. Rigge, M. Weiner, G. Ranade, A. Sahai, B. Nikolić, Real-time cooperative communication for automation over wireless. IEEE Trans. Wirel. Commun. 16(11), 7168–7183 (2017)

    Article  Google Scholar 

  27. J.N. Laneman, D.N. Tse, G.W. Wornell, Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. theory 50(12), 3062–3080 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Zhang, H. Zhou, K. Zheng, N. Cheng, J.W. Mark, X. Shen, Cooperative heterogeneous framework for spectrum harvesting in cognitive cellular network. IEEE Commun. Mag. 53(5), 60–67 (2015)

    Article  Google Scholar 

  29. J.N. Laneman, G.W. Wornell, D.N. Tse, An efficient protocol for realizing cooperative diversity in wireless networks, in Proceedings of the 2001 IEEE International Symposium on Information Theory, 2001 (IEEE, Piscataway, 2001), p. 294

    Google Scholar 

  30. Y. Huang, C.W. Tan, B.D. Rao, Joint beamforming and power control in coordinated multicell: max-min duality, effective network and large system transition. IEEE Trans. Wirel. Commun. 12(6), 2730–2742 (2013)

    Article  Google Scholar 

  31. S. He, Y. Huang, S. Jin, L. Yang, Coordinated beamforming for energy efficient transmission in multicell multiuser systems. IEEE Trans. Commun. 61(12), 4961–4971 (2013)

    Article  Google Scholar 

  32. B. Hu, C. Hua, J. Zhang, C. Chen, X. Guan, Joint fronthaul multicast beamforming and user-centric clustering in downlink C-RANs. IEEE Trans. Wirel. Commun. 16(8), 5395–5409 (2017)

    Article  Google Scholar 

  33. X. Zhai, C.W. Tan, Y. Huang, B.D. Rao, Transmit beamforming and power control for optimizing the outage probability fairness in MISO networks. IEEE Trans. Commun. 65(2), 839–850 (2017)

    Article  Google Scholar 

  34. O. Tervo, L.N. Tran, M. Juntti, Optimal energy-efficient transmit beamforming for multi-user MISO downlink. IEEE Trans. Signal Process. 63(20), 5574–5588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Jeon, C. Song, S.R. Lee, S. Maeng, J. Jung, I. Lee, New beamforming designs for joint spatial division and multiplexing in large-scale MISO multi-user systems. IEEE Trans. Wirel. Commun. 16(5), 3029–3041 (2017)

    Article  Google Scholar 

  36. M. Sheng, L. Wang, X. Wang, Y. Zhang, C. Xu, J. Li, Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer. IEEE J. Sel. Areas Commun. 34(4), 954–968 (2016)

    Article  Google Scholar 

  37. S. Gong, L. Duan, N. Gautam, Optimal scheduling and beamforming in relay networks with energy harvesting constraints. IEEE Trans. Wirel. Commun. 15(2), 1226–1238 (2016)

    Article  Google Scholar 

  38. Z.K. Nagy, R.D. Braatz, Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control 14(4), 411–422 (2004)

    Article  Google Scholar 

  39. L. Liu, C. Hua, C. Chen, X. Guan, Power allocation for virtual MIMO-based three-stage relaying in wireless Ad Hoc networks. IEEE Trans. Wirel. Commun. 13(12), 6528–6541 (2014)

    Article  Google Scholar 

  40. W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Luo, R.S. Blum, L. Cimini, L. Greenstein, A. Haimovich, Power allocation in a transmit diversity system with mean channel gain information. IEEE Commun. Lett. 9(7), 616–618 (2005)

    Article  Google Scholar 

  42. S. Bayat, R.H. Louie, Z. Han, B. Vucetic, Y. Li, Distributed user association and femtocell allocation in heterogeneous wireless networks. IEEE Trans. Commun. 62(8), 3027–3043 (2014)

    Article  Google Scholar 

  43. D. Xue, Y. Chen, D.P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB (SIAM, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  44. V. Gupta, B. Hassibi, R.M. Murray, Optimal LQG control across packet-dropping links. Syst. Control Lett. 56(6), 439–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Daafouz, P. Riedinger, C. Iung, Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Ghosh, B.D. Rao, J.R. Zeidler, Outage-efficient strategies for multiuser MIMO networks with channel distribution information. IEEE Trans. Signal Process. 58(12), 6312–6324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyu, L., Guan, X., Cheng, N., Shen, X.S. (2023). Sensing and Control Oriented Transmission for Industrial Network Systems. In: Advanced Wireless Technologies for Industrial Network Systems. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26963-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26963-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26962-2

  • Online ISBN: 978-3-031-26963-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics