Skip to main content

Advanced Wireless Technologies for Industrial Automation

  • Chapter
  • First Online:
Advanced Wireless Technologies for Industrial Network Systems

Part of the book series: Wireless Networks ((WN))

  • 202 Accesses

Abstract

With the rapid development of wireless communication technologies, many advanced wireless technologies could be applied to industrial control system to improve the production efficiency. However, spectrum is a kind of very valuable resources in wireless networks. In recent years, with the proliferation of various wireless application devices, spectrum resources in wireless networks have become very scarce. Moreover, with the wide application of wireless communication technology in the industrial field, the demand for spectrum resources dramatically increases with the growth of the amount of exchanged data. The limitation of spectrum resources makes the problem of resource shortage more serious. On the other hand, the coexistence of vast and diverse wireless devices makes the wireless transmission environment in the industrial scene very complicated and volatile. There are a large number of wireless devices in the factory, which makes the environment for using spectrum complex and diverse. In addition, severe multipath fading and electromagnetic interference seriously affect the performance of data transmission in factories. Therefore, the shortage of spectrum resources and the complexity of industrial environment make the development of industrial wireless transmission face severe challenges. This chapter introduces some advanced wireless technologies to this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Adjoudani, E. Beck, A. Burg, G. Djuknic, T. Gvoth, D. Haessig, S. Manji, M. Milbrodt, M. Rupp, D. Samardzija, A. Siegel, T. Sizer, C. Tran, S. Walker, S. Wilkus, P. Wolniansky, Prototype experience for MIMO blast over third-generation wireless system. IEEE J. Sel. Areas Commun. 21(3), 440–451 (2003)

    Article  Google Scholar 

  2. E. Hossain, M. Rasti, H. Tabassum, A. Abdelnasser, Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel. Commun. 21(3), 118–127 (2014)

    Article  Google Scholar 

  3. P. Liu, Y. Li, Z. Zhang, Multiple fan-beam antenna array for massive MIMO applications. J. Commun. Inf. Netw. 3(1), 38–42 (2018)

    Article  Google Scholar 

  4. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  5. E. Björnson, E.G. Larsson, M. Debbah, Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated? IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016)

    Article  Google Scholar 

  6. B.M. Lee, H. Yang, Massive MIMO with massive connectivity for industrial Internet of Things. IEEE Trans. Ind. Electron. 67(6), 5187–5196 (2020)

    Article  Google Scholar 

  7. B.M. Lee, H. Yang, Massive MIMO for industrial Internet of Things in cyber-physical systems. IEEE Trans. Ind. Inf. 14(6), 2641–2652 (2018)

    Article  Google Scholar 

  8. B.M. Lee, Adaptive switching scheme for RS overhead reduction in massive MIMO with industrial Internet of Things. IEEE Internet Things J. 8(4), 2585–2602 (2021)

    Article  Google Scholar 

  9. B.M. Lee, Calibration for channel reciprocity in industrial massive MIMO antenna systems. IEEE Trans. Ind. Inf. 14(1), 221–230 (2018)

    Article  Google Scholar 

  10. B.M. Lee, Energy-efficient operation of massive MIMO in industrial Internet-of-Things networks. IEEE Internet Things J. 8(9), 7252–7269 (2021)

    Article  Google Scholar 

  11. B.M. Lee, H. Yang, Energy-efficient massive MIMO in massive industrial Internet of Things networks. IEEE Internet Things J. 9(5), 3657–3671 (2022)

    Article  Google Scholar 

  12. B.M. Lee, Energy efficient selected mapping schemes based on antenna grouping for industrial massive MIMO-OFDM antenna systems. IEEE Trans. Ind. Inf. 14(11), 4804–4814 (2018)

    Article  Google Scholar 

  13. B.M. Lee, Massive MIMO with downlink energy efficiency operation in industrial Internet of Things. IEEE Trans. Ind. Inf. 17(7), 4669–4680 (2021)

    Article  Google Scholar 

  14. X. Zhang, H.V. Poor, M. Chiang, Optimal power allocation for distributed detection over MIMO channels in wireless sensor networks. IEEE Trans. Signal Process. 56(9), 4124–4140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Nevat, G.W. Peters, I.B. Collings, Distributed detection in sensor networks over fading channels with multiple antennas at the fusion centre. IEEE Trans. Signal Process. 62(3), 671–683 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Jiang, J. Chen, A.L. Swindlehurst, J.A. López-Salcedo, Massive MIMO for wireless sensing with a coherent multiple access channel. IEEE Trans. Signal Process. 63(12), 3005–3017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Shirazinia, S. Dey, D. Ciuonzo, P. Salvo Rossi, Massive MIMO for decentralized estimation of a correlated source. IEEE Trans. Signal Process. 64(10), 2499–2512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Ding, X. Gao, Z. Xue, Y. Wu, Q. Shi, Massive MIMO for distributed detection with transceiver impairments. IEEE Trans. Veh. Technol. 67(1), 604–617 (2018)

    Article  Google Scholar 

  19. J. Wu, Y. Zhang, M. Zukerman, E. K.-N. Yung, Energy-efficient base-stations sleep-mode techniques in green cellular networks: a survey. IEEE Commun. Surv. Tutorials 17(2), 803–826 (2015)

    Article  Google Scholar 

  20. P. Salvo Rossi, D. Ciuonzo, G. Romano, Orthogonality and cooperation in collaborative spectrum sensing through MIMO decision fusion. IEEE Trans. Wirel. Commun. 12(11), 5826–5836 (2013)

    Article  Google Scholar 

  21. L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Sign. Proces. 8(5), 742–758 (2014)

    Article  Google Scholar 

  22. W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, X. Shen, Fast mmWave beam alignment via correlated bandit learning. IEEE Trans. Wirel. Commun. 18(12), 5894–5908 (2019)

    Article  Google Scholar 

  23. S. Saponara, F. Giannetti, B. Neri, G. Anastasi, Exploiting mm-Wave communications to boost the performance of industrial wireless networks. IEEE Trans. Ind. Inf. 13(3), 1460–1470 (2017)

    Article  Google Scholar 

  24. D. Solomitckii, A. Orsino, S. Andreev, Y. Koucheryavy, M. Valkama, Characterization of mmwave channel properties at 28 and 60 GHz in factory automation deployments, in 2018 IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6

    Google Scholar 

  25. G. Yang, M. Xiao, H.V. Poor, Low-latency millimeter-wave communications: traffic dispersion or network densification? IEEE Trans. Commun. 66(8), 3526–3539 (2018)

    Article  Google Scholar 

  26. E. Perahia, M.X. Gong, Gigabit wireless LANs: an overview of IEEE 802.11 ac and 802.11 ad. ACM SIGMOBILE Mob. Comput. Commun. Rev. 15(3), 23–33 (2011)

    Google Scholar 

  27. Y. Ghasempour, C.R.C.M. da Silva, C. Cordeiro, E.W. Knightly, IEEE 802.11ay: next-generation 60 GHz communication for 100 GB/s Wi-Fi. IEEE Commun. Mag. 55(12), 186–192 (2017)

    Google Scholar 

  28. From slow to 60ghz. Eng. Technol. 3(17), 70–73 (2008)

    Google Scholar 

  29. A. Seyedi, On the capacity of wideband 60 Ghz channels with antenna directionality, in IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference (2007), pp. 4532–4536

    Google Scholar 

  30. N. Ana-Maria, M. Alexandru, P.E. Cristian, Study of millimeter waves in 5G, in 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) (2021), pp. 1–4

    Google Scholar 

  31. J. Du, R.A. Valenzuela, How much spectrum is too much in millimeter wave wireless access. IEEE J. Sel. Areas Commun. 35(7), 1444–1458 (2017)

    Article  Google Scholar 

  32. M. Cheffena, Industrial wireless communications over the millimeter wave spectrum: opportunities and challenges. IEEE Commun. Mag. 54(9), 66–72 (2016)

    Article  Google Scholar 

  33. H. Xu, J. Wu, J. Li, X. Lin, Deep-reinforcement-learning-based cybertwin architecture for 6G IIoT: an integrated design of control, communication, and computing. IEEE Internet Things J. 8(22), 16 337–16 348 (2021)

    Google Scholar 

  34. A. Moerman, J. Van Kerrebrouck, O. Caytan, I.L. de Paula, L. Bogaert, G. Torfs, P. Demeester, H. Rogier, S. Lemey, Beyond 5G without obstacles: mmwave-over-fiber distributed antenna systems. IEEE Commun. Mag. 60(1), 27–33 (2022)

    Article  Google Scholar 

  35. M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G.K. Karagiannidis, E. Björnson, K. Yang, C.-L. I, A. Ghosh, Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 35(9), 1909–1935 (2017)

    Google Scholar 

  36. A. Jabbar, Q.H. Abbasi, N. Anjum, T. Kalsoom, N. Ramzan, S. Ahmed, P.M. Rafi-ul Shan, O.P. Falade, M.A. Imran, M. Ur Rehman, Millimeter-wave smart antenna solutions for URLLC in industry 4.0 and beyond. Sensors 22(7), 2688 (2022)

    Google Scholar 

  37. T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  38. J. Huang, C.-X. Wang, H. Chang, J. Sun, X. Gao, Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems. IEEE J. Sel. Areas Commun. 38(9), 2010–2025 (2020)

    Article  Google Scholar 

  39. C. Cano, G.H. Sim, A. Asadi, X. Vilajosana, A channel measurement campaign for mmwave communication in industrial settings. IEEE Trans. Wirel. Commun. 20(1), 299–315 (2021)

    Article  Google Scholar 

  40. Y. Xing, T.S. Rappaport, A. Ghosh, Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment. IEEE Commun. Lett. 25(10), 3151–3155 (2021)

    Article  Google Scholar 

  41. D. Dupleich, N. Han, A. Ebert, R. Müller, S. Ludwig, A. Artemenko, J. Eichinger, T. Geiss, G. Del Galdo, R. Thomä, From sub-6 GHz to mm-Wave: simultaneous multi-band characterization of propagation from measurements in industry scenarios, in 2022 16th European Conference on Antennas and Propagation (EuCAP) (2022), pp. 1–5

    Google Scholar 

  42. P. Johri, J. Singh, A. Sharma, D. Rastogi, Sustainability of coexistence of humans and machines: an evolution of industry 5.0 from industry 4.0, in 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART) (2021), pp. 410–414

    Google Scholar 

  43. B. Li, Z. Zhou, W. Zou, X. Sun, G. Du, On the efficient beam-forming training for 60 Ghz wireless personal area networks. IEEE Trans. Wirel. Commun. 12(2), 504–515 (2013)

    Article  Google Scholar 

  44. M.S. Ibrahim, S.R. Khosravirad, J. Mazgula, H. Viswanathan, n.d. Sidiropoulos, Beam selection for ultra-reliable low-latency communication in industrial environment with beamforming repeaters, in 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (2021)

    Google Scholar 

  45. Y. Xu, H. Xie, D. Li, R.Q. Hu, Energy-efficient beamforming for heterogeneous industrial IoT networks with phase and distortion noises. IEEE Trans. Ind. Inf. 1–1 (2022)

    Google Scholar 

  46. Y. Al-Eryani, E. Hossain, Self-organizing mmWave MIMO cell-free networks with hybrid beamforming: a hierarchical DRL-based design. IEEE Trans. Commun. 70(5), 3169–3185 (2022)

    Article  Google Scholar 

  47. J. Li, X. Li, L. Xiao, S. Zhou, Joint multi-beam and channel tracking for mmwave hybrid beamforming multi-user systems. IEEE Wirel. Commun. Lett. 10(7), 1513–1517 (2021)

    Article  Google Scholar 

  48. J. Ghosh, V. Sharma, H. Haci, S. Singh, I.-H. Ra, Performance investigation of NOMA versus OMA techniques for mmWave massive MIMO communications. IEEE Access 9, 125 300–125 308 (2021)

    Google Scholar 

  49. D. Zhao, H. Lu, Y. Wang, H. Sun, Y. Gui, Joint power allocation and user association optimization for IRS-assisted mmwave systems. IEEE Trans. Wirel. Commun. 21(1), 577–590 (2022)

    Article  Google Scholar 

  50. C. Pan, R. Liu, G. Yu, Joint user association and resource allocation for mmwave communication: a neural network approach. J. Commun. Inf. Netw. 6(2), 125–133 (2021)

    Article  Google Scholar 

  51. A. Khazali, D. Tarchi, M.G. Shayesteh, H. Kalbkhani, A. Bozorgchenani, Energy efficient uplink transmission in cooperative mmWave NOMA networks with wireless power transfer. IEEE Trans. Veh. Technol. 71(1), 391–405 (2022)

    Article  Google Scholar 

  52. D. Marasinghe, N. Jayaweera, N. Rajatheva, M. Latva-Aho, Hierarchical user clustering for mmWave-NOMA systems, in 2020 2nd 6G Wireless Summit (6G SUMMIT) (2020), pp. 1–5

    Google Scholar 

  53. C. Han, Y. Wang, Y. Li, Y. Chen, N.A. Abbasi, T. Kürner, A.F. Molisch, Terahertz wireless channels: a holistic survey on measurement, modeling, and analysis. IEEE Commun. Surv. Tutorials 24(3), 1670–1707 (2022)

    Article  Google Scholar 

  54. I.F. Akyildiz, J.M. Jornet, C. Han, Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

    Article  Google Scholar 

  55. Z. Chen, C. Han, Y. Wu, L. Li, C. Huang, Z. Zhang, G. Wang, W. Tong, Terahertz wireless communications for 2030 and beyond: a cutting-edge frontier. IEEE Commun. Mag. 59(11), 66–72 (2021)

    Article  Google Scholar 

  56. Y. He, Y. Chen, L. Zhang, S.-W. Wong, Z. N. Chen, An overview of terahertz antennas. China Commun. 17(7), 124–165 (2020)

    Article  Google Scholar 

  57. T. Kürner, S. Priebe, Towards THz communications-status in research, standardization and regulation. J. Infrared Millimeter Terahertz Waves 35(1), 53–62 (2014)

    Article  Google Scholar 

  58. Y. Chen, Y. Li, C. Han, Z. Yu, G. Wang, Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications. IEEE Trans. Wirel. Commun. 20(12), 8163–8176 (2021)

    Article  Google Scholar 

  59. K. Guan, G. Li, T. Kürner, A.F. Molisch, B. Peng, R. He, B. Hui, J. Kim, Z. Zhong, On millimeter wave and THz mobile radio channel for smart rail mobility. IEEE Trans. Veh. Technol. 66(7), 5658–5674 (2016)

    Article  Google Scholar 

  60. Z. Hossain, C.N. Mollica, J.F. Federici, J.M. Jornet, Stochastic interference modeling and experimental validation for pulse-based terahertz communication. IEEE Trans. Wirel. Commun. 18(8), 4103–4115 (2019)

    Article  Google Scholar 

  61. L. You, X. Gao, G.Y. Li, X.-G. Xia, N. Ma, BDMA for millimeter-wave/terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 35(7), 1550–1563 (2017)

    Article  Google Scholar 

  62. J. Wang, C.-X. Wang, J. Huang, H. Wang, X. Gao, A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems. IEEE J. Sel. Areas Commun. 39(6), 1576–1589 (2021)

    Article  Google Scholar 

  63. D. He, K. Guan, A. Fricke, B. Ai, R. He, Z. Zhong, A. Kasamatsu, I. Hosako, T. Kürner, Stochastic channel modeling for kiosk applications in the terahertz band. IEEE Trans. Terahertz Sci. Technol. 7(5), 502–513 (2017)

    Article  Google Scholar 

  64. B. Peng, J. Yang, D.M. Rose, K. Guan, M. Zoli, T. Kürner, Electromagnetic parameter calibration for a broadband ray-launching simulator with sage algorithm for millimeter-wave communications. IEEE Access 8, 138 331–138 339 (2020)

    Google Scholar 

  65. V. Petrov, T. Kurner, I. Hosako, IEEE 802.15. 3D: first standardization efforts for sub-terahertz band communications toward 6G. IEEE Commun. Mag. 58(11), 28–33 (2020)

    Google Scholar 

  66. Y. Wu, C. Han, T. Yang, DFT-spread orthogonal time frequency space modulation design for terahertz communications, in 2021 IEEE Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2021), pp. 01–06

    Google Scholar 

  67. F. Gao, B. Wang, C. Xing, J. An, G. Y. Li, Wideband beamforming for hybrid massive MIMO terahertz communications. IEEE J. Sel. Areas Commun. 39(6), 1725–1740 (2021)

    Article  Google Scholar 

  68. W. Hao, G. Sun, M. Zeng, Z. Chu, Z. Zhu, O.A. Dobre, P. Xiao, Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks. IEEE Internet Things J. 8(16), 13 052–13 064 (2021)

    Google Scholar 

  69. A. Liao, Z. Gao, D. Wang, H. Wang, H. Yin, D.W.K. Ng, M.-S. Alouini, Terahertz ultra-massive MIMO-based aeronautical communications in space-air-ground integrated networks. IEEE J. Sel. Areas Commun. 39(6), 1741–1767 (2021)

    Article  Google Scholar 

  70. K. Dovelos, M. Matthaiou, H.Q. Ngo, B. Bellalta, Channel estimation and hybrid combining for wideband terahertz massive MIMO systems. IEEE J. Sel. Areas Commun. 39(6), 1604–1620 (2021)

    Article  Google Scholar 

  71. Q. Xia, Z. Hossain, M. Medley, J.M. Jornet, A link-layer synchronization and medium access control protocol for terahertz-band communication networks. IEEE Trans. Mob. Comput. 20(1), 2–18 (2019)

    Article  Google Scholar 

  72. H. Zhang, Y. Duan, K. Long, V. C. Leung, Energy efficient resource allocation in terahertz downlink NOMA systems. IEEE Trans. Commun. 69(2), 1375–1384 (2020)

    Article  Google Scholar 

  73. A. Shafie, N. Yang, S.A. Alvi, C. Han, S. Durrani, J.M. Jornet, Spectrum allocation with adaptive sub-band bandwidth for terahertz communication systems. IEEE Trans. Commun. 70(2), 1407–1422 (2021)

    Article  Google Scholar 

  74. V. Petrov, M. Komarov, D. Moltchanov, J.M. Jornet, Y. Koucheryavy, Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Trans. Wirel. Commun. 16(3), 1791–1808 (2017)

    Article  Google Scholar 

  75. C. Lin, G.Y. Li, Adaptive beamforming with resource allocation for distance-aware multi-user indoor terahertz communications. IEEE Trans. Commun. 63(8), 2985–2995 (2015)

    Article  MathSciNet  Google Scholar 

  76. R. Barazideh, O. Semiari, S. Niknam, B. Natarajan, Reinforcement learning for mitigating intermittent interference in terahertz communication networks, in 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (IEEE, Piscataway, 2020), pp. 1–6

    Google Scholar 

  77. A. Moldovan, P. Karunakaran, I.F. Akyildiz, W.H. Gerstacker, Coverage and achievable rate analysis for indoor terahertz wireless networks, in 2017 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2017), pp. 1–7

    Google Scholar 

  78. C.-C. Wang, X.-W. Yao, W.-L. Wang, J. M. Jornet, Multi-hop deflection routing algorithm based on reinforcement learning for energy-harvesting nanonetworks. IEEE Trans. Mob. Comput. 21(1), 211–225 (2020)

    Google Scholar 

  79. N. Akkari, P. Wang, J.M. Jornet, E. Fadel, L. Elrefaei, M.G.A. Malik, S. Almasri, I.F. Akyildiz, Distributed timely throughput optimal scheduling for the internet of nano-things. IEEE Internet Things J. 3(6), 1202–1212 (2016)

    Article  Google Scholar 

  80. H. Jiang, Y. Niu, B. Ai, Z. Zhong, S. Mao, QoS-aware bandwidth allocation and concurrent scheduling for terahertz wireless backhaul networks. IEEE Access 8, 125 814–125 825 (2020)

    Google Scholar 

  81. V.K. Sachan, A. Gupta, A. Kumar, Performance analysis of MIMO space diversity technique for wireless communications, in 2008 Fourth International Conference on Wireless Communication and Sensor Networks (2008), pp. 153–156

    Google Scholar 

  82. Y. Kondo, T. Tanaka, Adaptive time diversity for TDMA/TDD personal communication systems, in Proceedings of ICUPC ’95 – 4th IEEE International Conference on Universal Personal Communications (1995), pp. 973–976

    Google Scholar 

  83. S.-B. Lee, I. Pefkianakis, S. Choudhury, S. Xu, S. Lu, Exploiting spatial, frequency, and multiuser diversity in 3GPP LTE cellular networks. IEEE Trans. Mob. Comput. 11(11), 1652–1665 (2012)

    Article  Google Scholar 

  84. Z. Ma, M. Xiao, Y. Xiao, Z. Pang, H.V. Poor, B. Vucetic, High-reliability and low-latency wireless communication for Internet of Things: challenges, fundamentals, and enabling technologies. IEEE Internet Things J. 6(5), 7946–7970 (2019)

    Article  Google Scholar 

  85. S.L. Jong, M. D’Amico, J. Din, H.Y. Lam, Performance of time diversity technique in heavy rain region, in 2014 International Symposium on Antennas and Propagation Conference Proceedings (2014), pp. 575–576

    Google Scholar 

  86. K.A. Maria, N. Sutisna, Y. Nagao, L. Lanante, M. Kurosaki, B. Sai, H. Ochi, Channel selectivity schemes for re-transmission diversity in industrial wireless system, in 2017 International Symposium on Electronics and Smart Devices (ISESD) (2017), pp. 207–212

    Google Scholar 

  87. V.N. Swamy, S. Suri, P. Rigge, M. Weiner, G. Ranade, A. Sahai, B. Nikolić, Cooperative communication for high-reliability low-latency wireless control, in 2015 IEEE International Conference on Communications (ICC) (2015), pp. 4380–4386

    Google Scholar 

  88. Y. Ishii, Exploiting backbone routing redundancy in industrial wireless systems. IEEE Trans. Ind. Electron. 56(10), 4288–4295 (2009)

    Article  Google Scholar 

  89. Y. Hu, M. Serror, K. Wehrle, J. Gross, Finite blocklength performance of cooperative multi-terminal wireless industrial networks. IEEE Trans. Veh. Technol. 67(7), 5778–5792 (2018)

    Article  Google Scholar 

  90. A. Sendonaris, E. Erkip, B. Aazhang, User cooperation diversity. Part I. system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)

    Article  Google Scholar 

  91. T. Lv, Z. Zhang, S. Yang, A low complexity approach of combining cooperative diversity and multiuser diversity in multiuser cooperative networks. IEEE Trans. Signal Process. 61(24), 6247–6256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  92. X. Zhang, W. Wang, X. Ji, Multiuser diversity in multiuser two-hop cooperative relay wireless networks: system model and performance analysis. IEEE Trans. Veh. Technol. 58(2), 1031–1036 (2009)

    Article  Google Scholar 

  93. V. Narasimha Swamy, S. Suri, P. Rigge, M. Weiner, G. Ranade, A. Sahai, B. Nikolić, Real-time cooperative communication for automation over wireless. IEEE Trans. Wirel. Commun. 16(11), 7168–7183 (2017)

    Article  Google Scholar 

  94. S.R. Khosravirad, H. Viswanathan, W. Yu, Exploiting diversity for ultra-reliable and low-latency wireless control. IEEE Trans. Wirel. Commun. 20(1), 316–331 (2021)

    Article  Google Scholar 

  95. C. He, G.Y. Li, F.-C. Zheng, X. You, Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Trans. Veh. Technol. 63(3), 1223–1231 (2014)

    Article  Google Scholar 

  96. H. Zhou, N. Cheng, Q. Yu, X. Sherman Shen, D. Shan, F. Bai, Toward multi-radio vehicular data piping for dynamic DSRC/TVWS spectrum sharing. IEEE J. Sel. Areas Commun. 34(10), 2575–2588 (2016)

    Article  Google Scholar 

  97. X. Jin, F. Kong, L. Kong, H. Wang, C. Xia, P. Zeng, Q. Deng, A hierarchical data transmission framework for industrial wireless sensor and actuator networks. IEEE Trans. Ind. Inf. 13(4), 2019–2029 (2017)

    Article  Google Scholar 

  98. L. Zhang, J. Liu, M. Xiao, G. Wu, Y.-C. Liang, S. Li, Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J. Sel. Areas Commun. 35(10), 2398–2412 (2017)

    Article  Google Scholar 

  99. A. Kiani, N. Ansari, Edge computing aware NOMA for 5G networks. IEEE Internet Things J. 5(2), 1299–1306 (2018)

    Article  Google Scholar 

  100. Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)

    Article  Google Scholar 

  101. W. Liang, Z. Ding, Y. Li, L. Song, User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans. Commun. 65(12), 5319–5332 (2017)

    Article  Google Scholar 

  102. D. Ni, L. Hao, Q.T. Tran, X. Qian, Power allocation for downlink NOMA heterogeneous networks. IEEE Access 6, 26 742–26 752 (2018)

    Google Scholar 

  103. Y. Wu, L.P. Qian, H. Mao, X. Yang, H. Zhou, X. Shen, Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks. IEEE Trans. Mob. Comput. 17(11), 2591–2606 (2018)

    Article  Google Scholar 

  104. Z. Zhang, H. Sun, R.Q. Hu, Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE J. Sel. Areas Commun. 35 (12), 2771–2784 (2017)

    Article  Google Scholar 

  105. F. Fang, H. Zhang, J. Cheng, S. Roy, V.C.M. Leung, Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE J. Sel. Areas Commun. 35(12), 2874–2885 (2017)

    Article  Google Scholar 

  106. Z. Yang, W. Xu, Y. Pan, C. Pan, M. Chen, Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT. IEEE Internet Things J. 5(1), 229–245 (2018)

    Article  Google Scholar 

  107. M. Moltafet, P. Azmi, N. Mokari, M.R. Javan, A. Mokdad, Optimal and fair energy efficient resource allocation for energy harvesting-enabled-PD-NOMA-based HetNets. IEEE Trans. Wirel. Commun. 17(3), 2054–2067 (2018)

    Article  Google Scholar 

  108. Q. Liu, T. Lv, Z. Lin, Energy-efficient transmission design in cooperative relaying systems using NOMA. IEEE Commun. Lett. 22(3), 594–597 (2018)

    Article  Google Scholar 

  109. J. Wang, H. Xu, L. Fan, B. Zhu, A. Zhou, Energy-efficient joint power and bandwidth allocation for NOMA systems. IEEE Commun. Lett. 22(4), 780–783 (2018)

    Article  Google Scholar 

  110. G. Liu, R. Wang, H. Zhang, W. Kang, T.A. Tsiftsis, V.C.M. Leung, Super-modular game-based user scheduling and power allocation for energy-efficient NOMA network. IEEE Trans. Wirel. Commun. 17(6), 3877–3888 (2018)

    Article  Google Scholar 

  111. J.A. Oviedo, H.R. Sadjadpour, A fair power allocation approach to NOMA in multiuser SISO systems. IEEE Trans. Veh. Technol. 66(9), 7974–7985 (2017)

    Article  Google Scholar 

  112. Z.Q. Al-Abbasi, D.K.C. So, Resource allocation in non-orthogonal and hybrid multiple access system with proportional rate constraint. IEEE Trans. Wirel. Commun. 16(10), 6309–6320 (2017)

    Article  Google Scholar 

  113. P. Xu, K. Cumanan, Optimal power allocation scheme for non-orthogonal multiple access with α-fairness. IEEE J. Sel. Areas Commun. 35(10), 2357–2369 (2017)

    Article  Google Scholar 

  114. H. Xing, Y. Liu, A. Nallanathan, Z. Ding, H.V. Poor, Optimal throughput fairness tradeoffs for downlink non-orthogonal multiple access over fading channels. IEEE Trans. Wirel. Commun. 17(6), 3556–3571 (2018)

    Article  Google Scholar 

  115. S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems. IEEE Sig. Process. Lett. 22(10), 1647–1651 (2015)

    Article  Google Scholar 

  116. Y. Liu, M. Elkashlan, Z. Ding, G.K. Karagiannidis, Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Commun. Lett. 20(7), 1465–1468 (2016)

    Google Scholar 

  117. A.C. Cirik, N. Mysore Balasubramanya, L. Lampe, Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA. IEEE Wirel. Commun. Lett. 7(1), 46–49 (2018)

    Article  Google Scholar 

  118. T. Qi, W. Feng, Y. Chen, Y. Wang, When NOMA meets sparse signal processing: asymptotic performance analysis and optimal sequence design. IEEE Access 5, 18 516–18 525 (2017)

    Google Scholar 

  119. B. Tomasi, F. Gabry, V. Bioglio, I. Land, J.-C. Belfiore, Low-complexity receiver for multi-level polar coded modulation in non-orthogonal multiple access, in 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (2017), pp. 1–6

    Google Scholar 

  120. Z. Tang, J. Wang, J. Wang, J. Song, A low-complexity detection algorithm for uplink NOMA system based on gaussian approximation, in 2017 IEEE Wireless Communications and Networking Conference (WCNC) (2017), pp. 1–6

    Google Scholar 

  121. Z. Yang, Z. Ding, P. Fan, N. Al-Dhahir, A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun. 15(11), 7244–7257 (2016)

    Article  Google Scholar 

  122. J. Choi, On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Trans. Wirel. Commun. 15(5), 3226–3237 (2016)

    Article  Google Scholar 

  123. B. Di, L. Song, Y. Li, Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Trans. Wirel. Commun. 15(11), 7686–7698 (2016)

    Article  Google Scholar 

  124. D. Hu, Y. Zhang, H. Cao, M. Zhou, L. Yang, Energy-efficient transmission design for downlink non-orthogonal multiple access network, in 2019 IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW) (2019), pp. 1–2

    Google Scholar 

  125. M.S. Ali, H. Tabassum, E. Hossain, Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access 4, 6325–6343 (2016)

    Google Scholar 

  126. P. Zhou, B. Yang, C. Chen, Joint computation offloading and resource allocation for NOMA-enabled industrial Internet of Things, in 2020 39th Chinese Control Conference (CCC) (2020), pp. 5241–5246

    Google Scholar 

  127. K. Wang, Y. Zhou, Z. Liu, Z. Shao, X. Luo, Y. Yang, Online task scheduling and resource allocation for intelligent NOMA-based industrial Internet of Things. IEEE J. Sel. Areas Commun. 38(5), 803–815 (2020)

    Article  Google Scholar 

  128. Z. Kuang, L. Li, J. Gao, L. Zhao, A. Liu, Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet Things J. 6(4), 6774–6785 (2019)

    Article  Google Scholar 

  129. H. Gao, X. Guo, Deep reinforcement learning-based computation offloading and optimal resource allocation in industrial Internet of Things with NOMA, in 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS) (2022), pp. 198–203

    Google Scholar 

  130. T. Zhao, F. Li, L. He, DRL-based joint resource allocation and device orchestration for hierarchical federated learning in NOMA-enabled industrial IoT. IEEE Trans. Ind. Inf. 1–1 (2022)

    Google Scholar 

  131. L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, B. Lin, NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial Internet of Things. IEEE Trans. Ind. Inf. 17(8), 5688–5698 (2021)

    Article  Google Scholar 

  132. V.D. Tuong, W. Noh, S. Cho, Delay minimization for NOMA-enabled mobile edge computing in industrial Internet of Things. IEEE Trans. Ind. Inf. 18(10), 7321–7331 (2022)

    Article  Google Scholar 

  133. S. Haykin, Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  134. T.-M. Groenli, B. Flesch, R. Mukkamala, R. Vatrapu, S. Klavestad, H. Bergner, Internet of Things big data analytics: the case of noise level measurements at the Roskilde music festival, in 2018 IEEE International Conference on Big Data (Big Data) (2018), pp. 5153–5158

    Google Scholar 

  135. N. Yang, H. Zhang, K. Long, C. Jiang, Y. Yang, Spectrum management scheme in fog IoT networks. IEEE Commun. Mag. 56(10), 101–107 (2018)

    Article  Google Scholar 

  136. M. Karimi, S.M.S. Sadough, M. Torabi, Optimal cognitive radio spectrum access with joint spectrum sensing and power allocation. IEEE Wirel. Commun. Lett. 9(1), 8–11 (2020)

    Article  Google Scholar 

  137. A. Ali, L. Feng, A.K. Bashir, S. El-Sappagh, S.H. Ahmed, M. Iqbal, G. Raja, Quality of service provisioning for heterogeneous services in cognitive radio-enabled Internet of Things. IEEE Trans. Netw. Sci. Eng. 7(1), 328–342 (2020)

    Article  MathSciNet  Google Scholar 

  138. D.S. Gurjar, H.H. Nguyen, H.D. Tuan, Wireless information and power transfer for IoT applications in overlay cognitive radio networks. IEEE Internet Things J. 6(2), 3257–3270 (2019)

    Article  Google Scholar 

  139. P.K. Sahoo, S. Mohapatra, J.-P. Sheu, Dynamic spectrum allocation algorithms for industrial cognitive radio networks. IEEE Trans. Ind. Inf. 14(7), 3031–3043 (2018)

    Article  Google Scholar 

  140. F. Lin, C. Chen, L. Li, H. Xu, X. Guan, A novel spectrum sharing scheme for industrial cognitive radio networks: from collective motion perspective, in 2014 IEEE International Conference on Communications (ICC) (2014), pp. 203–208

    Google Scholar 

  141. T.M. Chiwewe, G.P. Hancke, Fast convergence cooperative dynamic spectrum access for cognitive radio networks. IEEE Trans. Ind. Inf. 14(8), 3386–3394 (2018)

    Article  Google Scholar 

  142. Y. Liu, L. Dong, Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Trans. Wirel. Commun. 13(9), 4807–4820 (2014)

    Article  Google Scholar 

  143. X.-L. Huang, Y.-X. Li, Y. Gao, X.-W. Tang, Q-learning-based spectrum access for multimedia transmission over cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 7(1), 110–119 (2021)

    Article  Google Scholar 

  144. X. Liu, C. Sun, W. Yu, M. Zhou, Reinforcement-learning-based dynamic spectrum access for software-defined cognitive industrial Internet of Things. IEEE Trans. Ind. Inf. 18(6), 4244–4253 (2022)

    Article  Google Scholar 

  145. H. Zhang, Z. Zhang, X. Chen, R. Yin, Energy efficient joint source and channel sensing in cognitive radio sensor networks, in 2011 IEEE International Conference on Communications (ICC) (2011), pp. 1–6

    Google Scholar 

  146. T. Zheng, Y. Qin, H. Zhang, S.-Y. Kuo, A self-configurable power control algorithm for cognitive radio-based industrial wireless sensor networks with interference constraints, in 2012 IEEE International Conference on Communications (ICC) (2012), pp. 98–103

    Google Scholar 

  147. R. Deng, J. Chen, C. Yuen, P. Cheng, Y. Sun, Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Trans. Veh. Technol. 61(2), 716–725 (2012)

    Article  Google Scholar 

  148. J.A. Han, W.S. Jeon, D.G. Jeong, Energy-efficient channel management scheme for cognitive radio sensor networks. IEEE Trans. Veh. Technol. 60(4), 1905–1910 (2011)

    Article  Google Scholar 

  149. F. Zhou, N.C. Beaulieu, Z. Li, J. Si, P. Qi, Energy-efficient optimal power allocation for fading cognitive radio channels: ergodic capacity, outage capacity, and minimum-rate capacity. IEEE Trans. Wirel. Commun. 15(4), 2741–2755 (2016)

    Article  Google Scholar 

  150. H. Xiao, H. Jiang, F. Shi, Y. Luo, L. Deng, M. Mukherjee, M. J. Piran, Energy-efficient resource allocation in radio-frequency-powered cognitive radio network for connected vehicles. IEEE Trans. Intell. Transp. Syst. 22(8), 5426–5436 (2021)

    Article  Google Scholar 

  151. T.A.Q. Pham, S.-R. Kim, D.-S. Kim, A throughput-aware routing for distributed industrial cognitive radio sensor networks, in 2012 9th IEEE International Workshop on Factory Communication Systems (2012), pp. 87–90

    Google Scholar 

  152. L. Xu, W. Yin, X. Zhang, Y. Yang, Fairness-aware throughput maximization over cognitive heterogeneous NOMA networks for industrial cognitive IoT. IEEE Trans. Commun. 68(8), 4723–4733 (2020)

    Article  Google Scholar 

  153. X. Liu, S. Hu, M. Li, B. Lai, Energy-efficient resource allocation for cognitive industrial Internet of Things with wireless energy harvesting. IEEE Trans. Ind. Inf. 17(8), 5668–5677 (2021)

    Article  Google Scholar 

  154. A. Guirguis, M. ElNainay, Channel selection scheme for cooperative routing protocols in cognitive radio networks, in 2017 International Conference on Computing, Networking and Communications (ICNC) (2017), pp. 735–739

    Google Scholar 

  155. L. Chen, S. Iellamo, M. Coupechoux, Opportunistic spectrum access with channel switching cost for cognitive radio networks, in 2011 IEEE International Conference on Communications (ICC) (2011), pp. 1–5

    Google Scholar 

  156. S. Eryigit, S. Bayhan, T. Tugcu, Channel switching cost aware and energy-efficient cooperative sensing scheduling for cognitive radio networks, in 2013 IEEE International Conference on Communications (ICC) (2013), pp. 2633–2638

    Google Scholar 

  157. M. Santhoshkumar, D.J. Muttath, K. Premkumar, Throughput optimal opportunistic channel switching in cognitive radio networks. IEEE Wirel. Commun. Lett. 10(9), 2046–2050 (2021)

    Article  Google Scholar 

  158. S. Demirci, D. Gözüpek, Switching cost-aware joint frequency assignment and scheduling for industrial cognitive radio networks. IEEE Trans. Ind. Inf. 16(7), 4365–4377 (2020)

    Article  Google Scholar 

  159. W. Mao, Z. Zhao, Z. Chang, G. Min, W. Gao, Energy-efficient industrial Internet of Things: overview and open issues. IEEE Trans. Ind. Inf. 17(11), 7225–7237 (2021)

    Article  Google Scholar 

  160. K. Dev, K.F. Tsang, J.M. Corchado Rodríguez, Guest editorial: the era of industry 5.0 – technologies from no recognizable hm interface to hearty touch personal products. IEEE Trans. Ind. Inf. 18(8), 5432–5434 (2022)

    Google Scholar 

  161. A.S.M. Monjurul Hasan, A. Trianni, Energy management: sustainable approach towards industry 4.0, in 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2020), pp. 537–541

    Google Scholar 

  162. W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, X. Li, Dynamic RAN slicing for service-oriented vehicular networks via constrained learning. IEEE J. Sel. Areas Commun. (2020). https://doi.org/10.1109/JSAC.2020.3041405

  163. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, W. Zhuang, Holistic network virtualization and pervasive network intelligence for 6G. IEEE Commun. Surveys Tuts. 24(1), 1–30 (2022). 1st. Quart.

    Google Scholar 

  164. X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 1(1), 45–66 (2020)

    Article  Google Scholar 

  165. M.I. Aziz Zahed, I. Ahmad, D. Habibi, Q.V. Phung, Content caching in industrial IoT: security and energy considerations. IEEE Internet Things J. 7(1), 491–504 (2020)

    Article  Google Scholar 

  166. A.H. Sodhro, M.S. Obaidat, S. Pirbhulal, G.H. Sodhro, N. Zahid, A. Rawat, A novel energy optimization approach for artificial intelligence-enabled massive Internet of Things, in 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) (2019), pp. 1–6

    Google Scholar 

  167. B. Dai, Prospect of 5G communication mode for energy Internet, in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) (2018), pp. 1–5

    Google Scholar 

  168. A. Narayanan, A.S.D. Sena, D. Gutierrez-Rojas, D.C. Melgarejo, H.M. Hussain, M. Ullah, S. Bayhan, P.H.J. Nardelli, Key advances in pervasive edge computing for industrial Internet of Things in 5G and beyond. IEEE Access 8, 206 734–206 754 (2020)

    Google Scholar 

  169. R. Swaroop, A. Kumar, A brief study and analysis of NOMA techniques for 5G, in 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE) (2020), pp. 13–16

    Google Scholar 

  170. M.M.d. Silva, R. Dinis, Performance of NOMA with massive MIMO for 5G, in 2021 International Symposium on Networks, Computers and Communications (ISNCC) (2021), pp. 1–5

    Google Scholar 

  171. C. Xu, M. Wu, Y. Xu, Y. Fang, Uplink low-power scheduling for delay-bounded industrial wireless networks based on imperfect power-domain NOMA. IEEE Syst. J. 14(2), 2443–2454 (2020)

    Article  Google Scholar 

  172. Z. Wei, D.W.K. Ng, J. Yuan, H.-M. Wang, Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Trans. Commun. 65(9), 3944–3961 (2017)

    Article  Google Scholar 

  173. Z. Wang, Z. Lin, T. Lv, W. Ni, Energy-efficient resource allocation in massive MIMO-NOMA networks with wireless power transfer: a distributed ADMM approach. IEEE Internet Things J. 8(18), 14 232–14 247 (2021)

    Google Scholar 

  174. J. Tang, J. Luo, M. Liu, D.K.C. So, E. Alsusa, G. Chen, K.-K. Wong, J.A. Chambers, Energy efficiency optimization for NOMA with SWIPT. IEEE J. Sel. Topics Signal Process. 13(3), 452–466 (2019)

    Article  Google Scholar 

  175. X. Liu, X. Zhang, NOMA-based resource allocation for cluster-based cognitive industrial Internet of Things. IEEE Trans. Ind. Inf. 16(8), 5379–5388 (2020)

    Article  Google Scholar 

  176. X. Yuan, Z. Feng, W. Xu, W. Ni, J.A. Zhang, Z. Wei, R.P. Liu, Capacity analysis of UAV communications: cases of random trajectories. IEEE Trans. Veh. Technol. 67(8), 7564–7576 (2018)

    Article  Google Scholar 

  177. S. Aggarwal, N. Kumar, S. Tanwar, Blockchain-envisioned UAV communication using 6G networks: open issues, use cases, and future directions. IEEE Internet Things J. 8(7), 5416–5441 (2021)

    Article  Google Scholar 

  178. N. Gao, Y. Zeng, J. Wang, D. Wu, C. Zhang, Q. Song, J. Qian, S. Jin, Energy model for UAV communications: experimental validation and model generalization. China Commun. 18(7), 253–264 (2021)

    Article  Google Scholar 

  179. Z. Su, W. Feng, J. Tang, Z. Chen, Y. Fu, N. Zhao, K.-K. Wong, Energy efficiency optimization for D2D communications underlaying UAV-assisted industrial IoT networks with SWIPT. IEEE Internet Things J. 1–1 (2022)

    Google Scholar 

  180. A. Masaracchia, L.D. Nguyen, T.Q. Duong, C. Yin, O.A. Dobre, E. Garcia-Palacios, Energy-efficient and throughput fair resource allocation for TS-NOMA UAV-assisted communications. IEEE Trans. Commun. 68(11), 7156–7169 (2020)

    Article  Google Scholar 

  181. Z. Wang, T. Lv, J. Zeng, W. Ni, Placement and resource allocation of wireless-powered multiantenna UAV for energy-efficient multiuser NOMA. IEEE Trans. Wirel. Commun. 1–1 (2022)

    Google Scholar 

  182. H. Guo, J. Liu, UAV-enhanced intelligent offloading for Internet of Things at the edge. IEEE Trans. Ind. Inf. 16(4), 2737–2746 (2020)

    Article  Google Scholar 

  183. D. Zhai, C. Wang, R. Zhang, H. Cao, F.R. Yu, Energy-saving deployment optimization and resource management for UAV-assisted wireless sensor networks with NOMA. IEEE Trans. Veh. Technol. 71(6), 6609–6623 (2022)

    Article  Google Scholar 

  184. X. Qi, M. Yuan, Q. Zhang, Z. Yang, Joint power-trajectory-scheduling optimization in a mobile UAV-enabled network via alternating iteration. China Commun. 19(1), 136–152 (2022)

    Article  Google Scholar 

  185. S. Zhu, K. Ota, M. Dong, Green AI for IIoT: energy efficient intelligent edge computing for industrial Internet of Things. IEEE Trans. Green Commun. Netw. 6(1), 79–88 (2022)

    Article  Google Scholar 

  186. W. Fang, C. Zhu, F.R. Yu, K. Wang, W. Zhang, Towards energy-efficient and secure data transmission in AI-enabled software defined industrial networks. IEEE Trans. Ind. Inf. 18(6), 4265–4274 (2022)

    Article  Google Scholar 

  187. Q.-V. Pham, M. Le, T. Huynh-The, Z. Han, W.-J. Hwang, Energy-efficient federated learning over UAV-enabled wireless powered communications. IEEE Trans. Veh. Technol. 71(5), 4977–4990 (2022)

    Article  Google Scholar 

  188. X. Mo, J. Xu, Energy-efficient federated edge learning with joint communication and computation design. J. Commun. Inf. Netw. 6(2), 110–124 (2021)

    Article  Google Scholar 

  189. T. Zhang, S. Mao, Energy-efficient federated learning with intelligent reflecting surface. IEEE Trans. Green Commun. Netw. 6(2), 845–858 (2022)

    Article  Google Scholar 

  190. C.-C. Lin, D.-J. Deng, Z.-Y. Chen, K.-C. Chen, Key design of driving industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. IEEE Commun. Mag. 54(10), 46–52 (2016)

    Google Scholar 

  191. D. Wang, M. Mukherjee, L. Shu, Y. Chen, G. Hancke, Sleep scheduling for critical nodes in group-based industrial wireless sensor networks, in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 694–698

    Google Scholar 

  192. X. Li, D. Li, S. Li, S. Wang, C. Liu, Exploiting industrial big data strategy for load balancing in industrial wireless mobile networks. IEEE Access 6, 6644–6653 (2018)

    Article  Google Scholar 

  193. M. Mukherjee, L. Shu, W. Fang, Z. Zhou, Poster abstract: sleep scheduling in wireless powered industrial wireless sensor networks, in 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (2017), pp. 301–302

    Google Scholar 

  194. S. Nath, P.B. Gibbons, Communicating via fireflies: geographic routing on duty-cycled sensors, in 2007 6th International Symposium on Information Processing in Sensor Networks (2007), pp. 440–449

    Google Scholar 

  195. M. Mukherjee, L. Shu, L. Hu, G.P. Hancke, C. Zhu, Sleep scheduling in industrial wireless sensor networks for toxic gas monitoring. IEEE Wirel. Commun. 24(4), 106–112 (2017)

    Article  Google Scholar 

  196. G. Anastasi, M. Conti, M. Di Francesco, Extending the lifetime of wireless sensor networks through adaptive sleep. IEEE Trans. Ind. Inf. 5(3), 351–365 (2009)

    Article  Google Scholar 

  197. T. Dinh, Y. Kim, T. Gu, A.V. Vasilakos, An adaptive low-power listening protocol for wireless sensor networks in noisy environments. IEEE Syst. J. 12(3), 2162–2173 (2018)

    Article  Google Scholar 

  198. K. Wang, Y. Wang, Y. Sun, S. Guo, J. Wu, Green industrial Internet of Things architecture: an energy-efficient perspective. IEEE Commun. Mag. 54(12), 48–54 (2016)

    Article  Google Scholar 

  199. D. Bhattacharjee, T. Acharya, S. Chakravarty, Energy efficient data gathering in IoT networks with heterogeneous traffic for remote area surveillance applications: a cross layer approach. IEEE Trans. Green Commun. Netw. 5(3), 1165–1178 (2021)

    Article  Google Scholar 

  200. K. Suto, H. Nishiyama, N. Kato, C.-W. Huang, An energy-efficient and delay-aware wireless computing system for industrial wireless sensor networks. IEEE Access 3, 1026–1035 (2015)

    Article  Google Scholar 

  201. N. Zhu, X. Xu, S. Han, S. Lv, Sleep-scheduling and joint computation-communication resource allocation in MEC networks for 5G IIoT, in 2021 IEEE Wireless Communications and Networking Conference (WCNC) (2021), pp. 1–7

    Google Scholar 

  202. B. Wu, J. Zeng, S. Shao, W. Ni, Y. Tang, New game-theoretic approach to decentralized path selection and sleep scheduling for mobile edge computing. IEEE Trans. Wirel. Commun. 1–1 (2022)

    Google Scholar 

  203. Y. Sun, E. Uysal-Biyikoglu, R.D. Yates, C.E. Koksal, N.B. Shroff, Update or wait: how to keep your data fresh. IEEE Trans. Inf. Theory 63(11), 7492–7508 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  204. A.M. Bedewy, Y. Sun, R. Singh, N.B. Shroff, Optimizing information freshness using low-power status updates via sleep-wake scheduling, in Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, ser. Mobihoc ’20 (Association for Computing Machinery, New York, 2020), pp. 51–60 [Online]. https://doi.org/10.1145/3397166.3409125

  205. J. Wang, X. Cao, B. Yin, Y. Cheng, Sleep–wake sensor scheduling for minimizing AOI-penalty in industrial Internet of Things. IEEE Internet Things J. 9(9), 6404–6417 (2022)

    Article  Google Scholar 

  206. Z. Fang, J. Wang, Y. Ren, Z. Han, H.V. Poor, L. Hanzo, Age of information in energy harvesting aided massive multiple access networks. IEEE J. Sel. Areas Commun. 40(5), 1441–1456 (2022)

    Article  Google Scholar 

  207. S. Krug, S. Bader, B. Oelmann, M. O’Nils, Suitability of communication technologies for harvester-powered IoT-nodes, in 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS) (2019), pp. 1–8

    Google Scholar 

  208. S. Hu, X. Chen, W. Ni, X. Wang, E. Hossain, Modeling and analysis of energy harvesting and smart grid-powered wireless communication networks: a contemporary survey. IEEE Trans. Green Commun. Netw. 4(2), 461–496 (2020)

    Article  Google Scholar 

  209. H. Hayashi, T. Ueda, Requirements and considerations of energy harvesting for industrial wireless transmitter, in 2012 Proceedings of SICE Annual Conference (SICE) (2012), pp. 1414–1415

    Google Scholar 

  210. Y. Li, K. Tao, B. George, Z. Tan, Harvesting vibration energy: technologies and challenges. IEEE Ind. Elect. Mag. 15(1), 30–39 (2021)

    Article  Google Scholar 

  211. Z. Meng, Y. Liu, N. Gao, Z. Zhang, Z. Wu, J. Gray, Radio frequency identification and sensing: integration of wireless powering, sensing, and communication for IIoT innovations. IEEE Commun. Mag. 59(3), 38–44 (2021)

    Article  Google Scholar 

  212. B. Martinez, M. Montón, I. Vilajosana, J.D. Prades, The power of models: modeling power consumption for IoT devices. IEEE Sens. J. 15(10), 5777–5789 (2015)

    Article  Google Scholar 

  213. G. Zhang, W. Zhang, Y. Cao, D. Li, L. Wang, Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices. IEEE Trans. Ind. Inf. 14(10), 4642–4655 (2018)

    Article  Google Scholar 

  214. J. Song, Q. Song, Y. Wang, P. Lin, Energy-delay tradeoff in adaptive cooperative caching for energy-harvesting ultradense networks. IEEE Trans. Comput. Soc. Syst. 9(1), 218–229 (2022)

    Article  Google Scholar 

  215. X. Li, S. Bi, Z. Quan, H. Wang, Online cognitive data sensing and processing optimization in energy-harvesting edge computing systems. IEEE Trans. Wirel. Commun. 1–1 (2022)

    Google Scholar 

  216. H. Ko, S. Pack, V.C.M. Leung, Performance optimization of serverless computing for latency-guaranteed and energy-efficient task offloading in energy harvesting industrial IoT. IEEE Internet Things J. 1–1 (2021)

    Google Scholar 

  217. S. Kurma, P.K. Sharma, K. Singh, S. Mumtaz, C.-P. Li, URLLC based cooperative industrial IoT networks with non-linear energy harvesting. IEEE Trans. Ind. Inf. 1–1 (2022)

    Google Scholar 

  218. M. Merluzzi, P.D. Lorenzo, S. Barbarossa, V. Frascolla, Dynamic computation offloading in multi-access edge computing via ultra-reliable and low-latency communications. IEEE Trans. Signal Inf. Process. Netw. 6, 342–356 (2020)

    MathSciNet  Google Scholar 

  219. A. Ranjha, G. Kaddoum, URLLC-enabled by laser powered UAV relay: a quasi-optimal design of resource allocation, trajectory planning and energy harvesting. IEEE Trans. Veh. Technol. 71(1), 753–765 (2022)

    Article  Google Scholar 

  220. A.A. Nasir, H.D. Tuan, T.Q. Duong, M. Debbah, NOMA throughput and energy efficiency in energy harvesting enabled networks. IEEE Trans. Commun. 67(9), 6499–6511 (2019)

    Article  Google Scholar 

  221. X. Pei, W. Duan, M. Wen, Y.-C. Wu, H. Yu, V. Monteiro, Socially aware joint resource allocation and computation offloading in NOMA-aided energy-harvesting massive IoT. IEEE Internet Things J. 8(7), 5240–5249 (2021)

    Article  Google Scholar 

  222. Z. Wang, T. Lv, W. Li, Energy efficiency maximization in massive MIMO-NOMA networks with non-linear energy harvesting, in 2021 IEEE Wireless Communications and Networking Conference (WCNC) (2021), pp. 1–6

    Google Scholar 

  223. Z. Yang, W. Xu, M. Shikh-Bahaei, Energy efficient UAV communication with energy harvesting. IEEE Trans. Veh. Technol. 69(2), 1913–1927 (2020)

    Article  Google Scholar 

  224. Q. Zhang, Z. Wang, P. Zhang, H. Zhang, X. Wan, Z. Fan, Sum energy maximization for UAV-enabled wireless power transfer networks with nonlinear energy harvesting model, in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1 (2020), pp. 1417–1420

    Google Scholar 

  225. X. Yuan, T. Yang, Y. Hu, J. Xu, A. Schmeink, Trajectory design for UAV-enabled multiuser wireless power transfer with nonlinear energy harvesting. IEEE Trans. Wirel. Commun. 20(2), 1105–1121 (2021)

    Article  Google Scholar 

  226. X. Xu, Y. Zhao, L. Tao, Z. Xu, Resource allocation strategy for dual UAVs-assisted MEC system with hybrid solar and RF energy harvesting, in 2021 3rd International Conference on Computer Communication and the Internet (ICCCI) (2021), pp. 52–57

    Google Scholar 

  227. H. Xiao, H. Jiang, L.-P. Deng, Y. Luo, Q.-Y. Zhang, Outage energy efficiency maximization for UAV-assisted energy harvesting cognitive radio networks. IEEE Sens. J. 22(7), 7094–7105 (2022)

    Article  Google Scholar 

  228. J. Jang, H.J. Yang, Deep learning-aided user association and power control with renewable energy sources. IEEE Trans. Commun. 70(4), 2387–2403 (2022)

    Article  Google Scholar 

  229. B. Zhao, X. Zhao, Deep reinforcement learning resource allocation in wireless sensor networks with energy harvesting and relay. IEEE Internet Things J. 9(3), 2330–2345 (2022)

    Article  Google Scholar 

  230. Y. Al-Eryani, M. Akrout, E. Hossain, Antenna clustering for simultaneous wireless information and power transfer in a MIMO full-duplex system: a deep reinforcement learning-based design. IEEE Trans. Commun. 69(4), 2331–2345 (2021)

    Article  Google Scholar 

  231. S. Guo, X. Zhao, Deep reinforcement learning optimal transmission algorithm for cognitive Internet of Things with RF energy harvesting. IEEE Trans. Cognit. Commun. Netw. 8(2), 1216–1227 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyu, L., Guan, X., Cheng, N., Shen, X.S. (2023). Advanced Wireless Technologies for Industrial Automation. In: Advanced Wireless Technologies for Industrial Network Systems. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-26963-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26963-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26962-2

  • Online ISBN: 978-3-031-26963-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics