Skip to main content

Part of the book series: Agriculture Automation and Control ((AGAUCO))

Abstract

Although grapevine is a drought-tolerant species, it has elevated water requirements to complete its growth cycle, which, in the end, coincides with the driest months of the year. As a result, irrigation is increasingly being applied to vineyards worldwide. Moreover, a period of strong variability and uncertainty in water availability is forecast due to climate change; therefore, improving viticulture’s irrigation scheduling is critical for achieving a sustainable and productive grape and wine industry. Effective implementation of sustainable water management can only be based on objective and representative monitoring of the crop water status. Since many of these classical procedures are either destructive, tedious, or difficult to automate, noninvasive technologies have been developed in the last decade to assess vineyard water status spatial variability. Likewise, novel approaches based on soil electrical conductivity, thermography, NIR spectroscopy, and multispectral and hyperspectral imagery—remote (from aircraft or drones) or proximal (from handheld devices or ground-moving vehicles)—are discussed. Also, use cases that utilize these techniques to implement more precise, smart irrigation management are described. Finally, alternative practices to reduce water consumption in viticulture are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abioye, E. A., Abidin, E. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Abd Rahman, M. K. I., Otuoze, A. O., Onotu, P., & Ramli, M. S. A. (2020). A review on monitoring and advanced control strategies for precision irrigation. Computers and Electronics in Agriculture, 173, 105441.

    Article  Google Scholar 

  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285–302.

    Article  Google Scholar 

  • Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97, 956–964.

    Article  Google Scholar 

  • Balafoutis, A. T., Koundouras, S., Anastasiou, E., Fountas, S., & Arvanitis, K. (2017). Life cycle assessment of two vineyards after the application of precision viticulture techniques: A case study. Sustainability, 9, 1997.

    Article  Google Scholar 

  • Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using and unmanned aerial vehicle (UAV). Irrigation Science, 30, 511–522.

    Article  Google Scholar 

  • Bellvert, J., Marsal, J., Girona, J., & Zarco-Tejada, P. (2015). Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 33, 81–93.

    Article  Google Scholar 

  • Bellvert, J., Zarco-Tejada, P. J., Marsal, J., Girona, J., Gonzalez-Dugo, V., & Fereres, E. (2016). Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Australian Journal of Grape and Wine Research, 22, 307–315.

    Article  Google Scholar 

  • Bellvert, J., Mata, M., Vallverdú, X., Paris, C., & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22, 319–341.

    Article  Google Scholar 

  • Bourgeon, M. A., Gée, C., Debuisson, S., Villette, S., Jones, G., & Paoli, J. N. (2017). On-the-go multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices. Precision Agriculture, 18, 293–308.

    Article  Google Scholar 

  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10, 32–45.

    Article  Google Scholar 

  • Brillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S., & Tomassi, D. (2016). Comparing kaolin and pinolene to improve sustainable grapevine production during drought. PLoS One, 11(6), e0156631. https://doi.org/10.1371/journal.pone.0156631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartzoulakis, K., & Bertaki, M. (2015). Sustainable water management in agriculture under climate change. Agriculture and Agricultural Science Procedia, 4, 88–98.

    Article  Google Scholar 

  • Cohen, Y., Alchanatis, V., Saranga, Y., Rosenberg, O., Sela, E., & Bosak, A. (2017). Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from single leaf to commercial fields. Precision Agriculture, 5, 801–822.

    Article  Google Scholar 

  • Costa, M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5–18.

    Article  Google Scholar 

  • Costa, J. M., Egipto, R., Sánchez-Virosta, A., Lopes, C. M., & Chaves, M. M. (2019). Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agricultural Water Management, 216, 484–496.

    Article  Google Scholar 

  • Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 3, 53–92.

    Article  CAS  Google Scholar 

  • De Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, R., Pech, J., & Tyerman, S. (2011). Non-destructive measurement of grapevine water potential using near infrared spectroscopy. Australian Journal of Grape and Wine Research, 17, 62–71.

    Article  Google Scholar 

  • Diago, M. P., Fernández-Novales, J., Gutiérrez, S., Marañón, M., & Tardáguila, J. (2018). Development and validation of a new methodology to assess the vineyard water status by on-the-go near infrared spectroscopy. Frontiers in Plant Science, 9, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, E. J., & Clingeleffer, P. R. (2013). Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of Cabernet Sauvignon grapevines. Australian Journal of Grape and Wine Research, 19, 261–276.

    Article  Google Scholar 

  • Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, J. E. (2014). Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural Water Management, 142, 99–109.

    Article  Google Scholar 

  • Fernández-Novales, J., Tardaguila, J., Gutiérrez, S., Marañón, M., & Diago, M. P. (2018). In field quantification and discrimination of different vineyard water regimes by on-the-go spectroscopy. Biosystems Engineering, 165, 47–58.

    Article  Google Scholar 

  • Fernández-Novales, J., Saiz-Rubio, V., Barrio, I., Rovira-Más, F., Cuenca-Cuenca, A., Santos Alves, F., Valente, J., Tardaguila, J., & Diago, M. P. (2021). Monitoring and mapping vineyard water status using non-invasive technologies by a ground robot. Remote Sensing, 13(14), 2830.

    Article  Google Scholar 

  • Gaudillère, J.-P., van Leeuwen, C., & Ollat, N. (2002). Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. Journal of Experimental Botany, 53, 757–763.

    Article  PubMed  Google Scholar 

  • Gonzalez-Dugo, V., Zarco-Tejada, P., Nicol’as, E., Nortes, P. A., Alarc’on, J. J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14, 660–678.

    Article  Google Scholar 

  • Gutiérrez, S., Diago, M. P., Fernández-Novales, J., & Tardaguila, J. (2018). Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS One, 13(2), 1–18.

    Article  Google Scholar 

  • Gutiérrez, S., Fernández-Novales, J., Diago, M. P., Íñiguez, R., & Tardaguila, J. (2021). Assessing and mapping vineyard water status using a ground mobile thermal imaging platform. Irrigation Science, 39, 457–468.

    Article  Google Scholar 

  • Idso, S., Jackson, R., Pinter, P., Reginato, R., & Hatfield, J. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

    Article  Google Scholar 

  • Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and forest meteorology, 95, 139–149.

    Article  Google Scholar 

  • Jones, H. G. (2004). Irrigation scheduling: Advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55, 2427–2436.

    Article  CAS  PubMed  Google Scholar 

  • Jones, H. G., Stoll, M., Santos, T., De Sousa, C., Chaves, M. M., & Grant, O. M. (2002). Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany, 53, 2249–2260.

    Article  CAS  PubMed  Google Scholar 

  • Maes, W. H., & Steppe, K. (2012). Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal of Experimental Botany, 63, 4671–4712.

    Article  CAS  PubMed  Google Scholar 

  • Mirás-Avalos, J. M., & Silva Araujo, E. (2021). Optimization of vineyard water management: Challenges, Strategies and perspectives. Water, 13, 746.

    Article  Google Scholar 

  • Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46, 99–118.

    Article  Google Scholar 

  • Pagay, V., & Kidman, C. M. (2019). Evaluating remotely-sensed grapevine (Vitis vinifera L.) water stress responses across a viticultural region. Agronomy, 9, 682.

    Article  Google Scholar 

  • Peñuelas, J., Filella, I., & Gamon, J. A. (1995). Assessment of photosynthetic radiation-use efficiency with spectral reflectance. The New Phytologist, 131, 291–296.

    Article  Google Scholar 

  • Peñuelas, J., Pinol, J., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18, 2869–2875.

    Article  Google Scholar 

  • Petrie, P. R., Wang, Y., Liu, S., Lam, S., Whitty, M. A., & Skewes, M. A. (2019). The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status. Biosystems Engineering, 179, 126–139.

    Article  Google Scholar 

  • Pôças, I., Gonçalves, J., Malva-Costa, P., Gonçalves, I., Pereira, L. S., & Cunha, M. (2017). Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. International Journal of Applied Earth Observation and Geoinformation, 58, 177–190.

    Article  Google Scholar 

  • Pôças, I., Tosin, R., Gonçalves, I., & Cunha, M. (2020). Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data. Agricultural and Forest Meteorology, 280, 107793.

    Google Scholar 

  • Poirier-Pocovi, M., & Bailey, B. N. (2020). Sensitivity analysis of four crop water stress indices to ambient environmental conditions and stomatal conductance. Scientia Horticulturae, 259, 108825.

    Article  Google Scholar 

  • Pou, A., Diago, M. P., Medrano, H., Baluja, J., & Tardaguila, J. (2014). Validation of thermal indices for water status identification in grapevine. Agricultural Water Management, 134, 60–72.

    Article  Google Scholar 

  • Prueger, J. H., Parry, C. K., Kustas, W. P., Alfieri, J. G., Alsina, M. M., Nieto, H., Wilson, T. G., Hipps, L. E., Anderson, M. C., Hatfield, J. L., Gao, F., McKee, L. G., McElrone, A., Agam, N., & Los, S. A. (2019). Crop water stress index of an irrigated vineyard in the central valley of California. Irrigation Science, 37, 297–313.

    Article  Google Scholar 

  • Rey-Caramés, C., Diago, M. P., Martin, M. P., Lobo, A., & Tardaguila, J. (2015). Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sensing, 7, 14458–14481.

    Article  Google Scholar 

  • Rienth, M., & Scholasch, T. (2019). State of the art of tools and methods to assess vine water status. Oeno one, 4, 619–637.

    Google Scholar 

  • Roby, G., Harbertson, J. F., Adams, D. A., & Matthews, M. A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100–107.

    Article  CAS  Google Scholar 

  • Romero, P., García-García, J., Fernández-Fernández, J. I., Gil-Muñoz, R., del Amor-Saavedra, F., & Martínez-Cutillas, A. (2016). Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Scientia Horticulturae, 203, 69–85.

    Article  CAS  Google Scholar 

  • Romero, M., Luo, Y., Su, B., & Fuentes, S. (2018). Vineyard water status estimation using multispectral imagery from UAV platform and machine learning algorithms for irrigation scheduling management. Computers and Electronics in Agriculture, 147, 109–117.

    Article  Google Scholar 

  • Romero, P., Navarro, J. M., & Botía-Ordaz, P. (2022). Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agricultural Water Management, 259, 107216.

    Article  Google Scholar 

  • Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: A review. Soil and Tillage Research, 83, 173–193.

    Article  Google Scholar 

  • Santesteban, L. G., Miranda, C., Marín, D., Sesma, B., Intrigliolo, D. S., Mirás-Avalos, J. M., Escalona, J. M., Montoro, A., de Herralde, F., Baeza, P., Romero, P., Yuste, J., Uriarte, D., Martínez-Gascueña, J., Cancela, J. J., Pinillos, V., Loidi, M., Urrestarazu, J., & Royo, J. B. (2019). Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.). Agricultural Water Management, 221, 202–210.

    Article  Google Scholar 

  • Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148, 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Sepúlveda-Reyes, D., Ingram, B., Bardeen, M., Zuñiga, M., Ortega-Farías, S., & Poblete-Echeverría, C. (2016). Selecting canopy zones and thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging. Remote Sensing, 8, 822.

    Article  Google Scholar 

  • Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G., & Wiebold, W. J. (2003). Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal, 482, 472–482.

    Article  Google Scholar 

  • Tardaguila, J., Fernández-Novales, J., Gutiérrez, S., & Diago, M. P. (2017). Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer. Journal of the Science of Food and Agriculture, 97, 3772–3780.

    Article  CAS  PubMed  Google Scholar 

  • Tardaguila, J., Stoll, M., Gutiérrez, S., Proffit, T., & Diago, M. P. (2021). Smart applications and digital technologies in viticulture: A review. Smart Agricultural Technology, 1, 100005.

    Article  Google Scholar 

  • Van Leeuwen, C., Tregoat, O., Chone, X., Bois, B., Pernet, D., & Gaudillère, J.-P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International Des Sciences de La Vigne et Du Vin, 43, 121–134.

    Google Scholar 

  • Williams, L. E. (2017). Physiological tools to assess vine water status for use in vineyard irrigation management: Review and update. Acta Horticulturae, 1157, 151–166.

    Article  Google Scholar 

  • Xia, T., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Gao, F., McKee, L., Prueger, J. H., Geli, H. M. E., Neale, C. M. U., Sanchez, L., Alsina, M. M., & Wang, Z. (2016). Mapping evapo-transpiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes. Hydrology and Earth System Sciences, 20, 1523–1545.

    Article  Google Scholar 

  • Yu, R., & Kurtural, K. (2020). Proximal sensing of soil electrical conductivity provides a link to soil-plant water relationships and supports the identification of plant water status zones in vineyards. Frontiers in Plant Science, 11, 244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Majeed, Y., Diverres-Naranjo, G., & Gambacorta, E. M. T. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182, 106019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Paz Diago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diago, M.P. (2023). Vineyard Water Management. In: Vougioukas, S.G., Zhang, Q. (eds) Advanced Automation for Tree Fruit Orchards and Vineyards. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-031-26941-7_4

Download citation

Publish with us

Policies and ethics