Skip to main content

Privacy in Social Edge

  • Chapter
  • First Online:
Social Edge Computing

Abstract

Privacy is an essential human-centric challenges to address for the success of the SEC paradigm. This is especially true for health-related applications in SEC. In this chapter, we review the work that studies the above challenge in a particular category of smart health application for SEC—Abnormal Health Detection Systems (AHDS). In particular, we present FedSens, a new federated learning framework dedicated to addressing the imbalanced data problem in AHDS applications with explicit considerations of participant privacy and device resource constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gym.openai.com/.

  2. 2.

    https://github.com/OpenMined/PySyft.

  3. 3.

    www.kaggle.com/c/stayalert/data.

  4. 4.

    http://cs.ru.nl/~skoldijk/SWELL-KW/Dataset.html.

References

  1. M.M. Baig, H. Gholamhosseini, Smart health monitoring systems: an overview of design and modeling. J. Med. Syst. 37(2), 9898 (2013)

    Google Scholar 

  2. A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, A.S. Pentland, Daily stress recognition from mobile phone data, weather conditions and individual traits, in Proceedings of the 22nd ACM International Conference on Multimedia (ACM, New York, 2014), pp. 477–486

    Google Scholar 

  3. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. M. Chen, W. Li, Y. Hao, Y. Qian, I. Humar, Edge cognitive computing based smart healthcare system. Future Gener. Comput. Syst. 86, 403–411 (2018)

    Article  Google Scholar 

  5. Y. Chen, J. Wang, C. Yu, W. Gao, X. Qin, Fedhealth: a federated transfer learning framework for wearable healthcare (2019). arXiv:1907.09173

    Google Scholar 

  6. J. Dieffenderfer, H. Goodell, S. Mills, M. McKnight, S. Yao, F. Lin, E. Beppler, B. Bent, B. Lee, V. Misra, et al., Low-power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J. Biomed. Health Inform. 20(5), 1251–1264 (2016)

    Article  Google Scholar 

  7. M. Duan, Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications (2019). arXiv:1907.01132

    Google Scholar 

  8. K. Fawaz, K.G. Shin, Location privacy protection for smartphone users, in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2014), pp. 239–250

    Google Scholar 

  9. P. Gaillard, G. Stoltz, T. Van Erven, A second-order bound with excess losses, in Conference on Learning Theory (2014), pp. 176–196

    Google Scholar 

  10. D.F. Hayes, H.S. Markus, R.D. Leslie, E.J. Topol, Personalized medicine: risk prediction, targeted therapies and mobile health technology. BMC Med. 12(1), 37 (2014)

    Google Scholar 

  11. N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

  12. J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon, Federated learning: strategies for improving communication efficiency (2016). arXiv:1610.05492

    Google Scholar 

  13. J.L. Leevy, T.M. Khoshgoftaar, R.A. Bauder, N. Seliya, A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 42 (2018)

    Google Scholar 

  14. D. Liu, T. Miller, R. Sayeed, K. Mandl, FADL: federated-autonomous deep learning for distributed electronic health record (2018). arXiv:1811.11400

    Google Scholar 

  15. J. Lockman, R.S. Fisher, D.M. Olson, Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 20(4), 638–641 (2011)

    Article  Google Scholar 

  16. H. Mao, M. Alizadeh, I. Menache, S. Kandula, Resource management with deep reinforcement learning, in Proceedings of the 15th ACM Workshop on Hot Topics in Networks (ACM, New York, 2016), pp. 50–56

    Google Scholar 

  17. H.B. McMahan, E. Moore, D. Ramage, S. Hampson, et al., Communication-efficient learning of deep networks from decentralized data (2016). arXiv:1602.05629

    Google Scholar 

  18. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in International Conference on Machine Learning (2016), pp. 1928–1937

    Google Scholar 

  19. T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources in mobile edge, in ICC 2019-2019 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2019), pp. 1–7

    Google Scholar 

  20. Y. O’Connor, W. Rowan, L. Lynch, C. Heavin, Privacy by design: informed consent and internet of things for smart health. Proc. Comput. Sci. 113, 653–658 (2017)

    Article  Google Scholar 

  21. W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  22. A. Solanas, C. Patsakis, M. Conti, I.S. Vlachos, V. Ramos, F. Falcone, O. Postolache, P.A. Pérez-Martínez, R. Di Pietro, D.N. Perrea, et al., Smart health: a context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81 (2014)

    Article  Google Scholar 

  23. U. Varshney, Pervasive healthcare and wireless health monitoring. Mobile Netw. Appl. 12(2–3), 113–127 (2007)

    Article  Google Scholar 

  24. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. 37(6), 1205–1221 (2019)

    Article  Google Scholar 

  25. D.Y. Zhang, Y. Ma, Y. Zhang, S. Lin, X.S. Hu, D. Wang, A real-time and non-cooperative task allocation framework for social sensing applications in edge computing systems, in 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (IEEE, Piscataway, 2018), pp. 316–326

    Google Scholar 

  26. D.Y. Zhang, Z. Kou, D. Wang, Fedsens: a federated learning approach for smart health sensing with class imbalance in resource constrained edge computing, in IEEE INFOCOM 2021-IEEE Conference on Computer Communications (IEEE, Piscataway, 2021), pp. 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Zhang, D.‘. (2023). Privacy in Social Edge. In: Social Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26936-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26936-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26935-6

  • Online ISBN: 978-3-031-26936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics