Skip to main content

Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems

  • Chapter
  • First Online:
Nano- and Microfabrication Techniques in Drug Delivery

Abstract

Advanced drug delivery systems hold great potential for the diagnosis and treatment of several diseases, and the benefits of nanomedicine-based products in healthcare have recently started to crystallize. Yet, their translation into clinical applications is still considered to be slow, mainly due to high batch-to-batch variation, complexity of preparation, high costs, and compromised scale-up feasibility. Considering the impact that mixing kinetics play on the properties of nanomedicines, microfluidics emerged as a technique to foster the preparation of micro- and nanoparticles with precisely controlled features, such as narrow size distribution, high homogeneity and reproducibility, high drug encapsulation efficiency, and enhanced scale-up feasibility. This chapter provides an overview on recent advances in microfluidic-assisted particle production. The basic principles of flow patterns and regimes are reviewed, as well as the materials and geometries used for the preparation of microfluidic devices. The impact of different parameters of the microfluidic setup on the physicochemical properties of the formulations is also discussed, and some of the most relevant micro- and nanoparticle technologies are reviewed. Possibilities for scale-up and the introduction of microfluidics in industrial settings are also briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ag Seleci D, Maurer V, Stahl F, Scheper T, Garnweitner G (2019) Rapid microfluidic preparation of niosomes for targeted drug delivery. Int J Mol Sci 20:4696

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahadian S, Finbloom JA, Mofidfar M, Diltemiz SE, Nasrollahi F, Davoodi E, Hosseini V, Mylonaki I, Sangabathuni S, Montazerian H, Fetah K, Nasiri R, Dokmeci MR, Stevens MM, Desai TA, Khademhosseini A (2020) Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 157:37–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2018) Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 1001:1–17

    Article  CAS  PubMed  Google Scholar 

  • Ali HSM, York P, Ali AMA, Blagden N (2011) Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 149:175–181

    Article  CAS  PubMed  Google Scholar 

  • Ali MS, Hooshmand N, El-Sayed M, Labouta HI (2021) Microfluidics for development of lipid nanoparticles: paving the way for nucleic acids to the clinic. ACS Appl Bio Mater

    Google Scholar 

  • Amador C, Gavriilidis A, Angeli P (2004) Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem Eng J 101:379–390

    Article  CAS  Google Scholar 

  • Amstad E, Kim SH, Weitz DA (2012) Photo- and thermoresponsive polymersomes for triggered release. Angew Chem Int Ed Engl 51:12499–12503

    Article  CAS  PubMed  Google Scholar 

  • Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

    Article  CAS  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4:e10143

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo F, das Neves J, Martins JP, Granja PL, Santos HA, Sarmento B (2017) Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Prog Mater Sci 89:306–344

    Article  Google Scholar 

  • Arduino I, Liu Z, Iacobazzi RM, Lopedota AA, Lopalco A, Cutrignelli A, Laquintana V, Porcelli L, Azzariti A, Franco M, Santos HA, Denora N (2021a) Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. Int J Pharm 610:121246

    Article  CAS  PubMed  Google Scholar 

  • Arduino I, Liu Z, Rahikkala A, Figueiredo P, Correia A, Cutrignelli A, Denora N, Santos HA (2021b) Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater 121:566–578

    Article  CAS  PubMed  Google Scholar 

  • Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  CAS  PubMed  Google Scholar 

  • Batty CJ, Bachelder EM, Ainslie KM (2021) Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics. Trends Mol Med 27:516–519

    Article  CAS  PubMed  Google Scholar 

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  CAS  PubMed  Google Scholar 

  • Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE (2018) Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5:659–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Belliveau NM, Huft J, Lin PJC, Chen S, Leung AKK, Leaver TJ, Wild AW, Lee JB, Taylor RJ, Tam YK, Hansen CL, Cullis PR (2012) Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertoni S, Liu Z, Correia A, Martins JP, Rahikkala A, Fontana F, Kemell M, Liu D, Albertini B, Passerini N, Li W, Santos HA (2018) pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv Funct Mater 28:1806175

    Article  Google Scholar 

  • Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal Chem 71:3292–3296

    Article  CAS  PubMed  Google Scholar 

  • Boleininger J, Kurz A, Reuss V, Sönnichsen C (2006) Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. Phys Chem Chem Phys 8:3824–3827

    Article  CAS  PubMed  Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  • Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X (2013) Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 65:1496–1532

    Article  CAS  PubMed  Google Scholar 

  • Capretto L, Mazzitelli S, Brognara E, Lampronti I, Carugo D, Hill M, Zhang X, Gambari R, Nastruzzi C (2012) Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia. Int J Nanomedicine 7:307–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chande C, Riaz N, Harbour V, Noor H, Torralba M, Cheng Y-H, Li Z, Tong A, Voronov R, Basuray S (2020) Universal method for fabricating PDMS microfluidic device using SU8, 3D printing and soft lithography. Technology 08:50–57

    Article  Google Scholar 

  • Chang CW, Cheng YJ, Tu M, Chen YH, Peng CC, Liao WH, Tung YC (2014) A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab Chip 14:3762–3772

    Article  CAS  PubMed  Google Scholar 

  • Chen C-H, Shah RK, Abate AR, Weitz DA (2009) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25:4320–4323

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG (2012) Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 134:6948–6951

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Li H, Liu Z, Yuan W (2016) Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease. Front Aging Neurosci 8

    Google Scholar 

  • Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-Y, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769

    Article  CAS  PubMed  Google Scholar 

  • Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9:1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2

    Google Scholar 

  • Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen S-P, Aguiar-Ricardo A, Corvo ML, Santos HA (2020) All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 8:3270–3277

    Article  CAS  PubMed  Google Scholar 

  • Damiati S, Kompella UB, Damiati SA, Kodzius R (2018) Microfluidic devices for drug delivery systems and drug screening. Genes 9:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Damiati SA, Rossi D, Joensson HN, Damiati S (2020) Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics. Sci Rep 10:19517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54:4972–4979

    Article  CAS  Google Scholar 

  • De Rose R, Zelikin AN, Johnston APR, Sexton A, Chong S-F, Cortez C, Mulholland W, Caruso F, Kent SJ (2008) Binding, internalization, and antigen presentation of vaccine-loaded nanoengineered capsules in blood. Adv Mater 20:4698–4703

    Article  Google Scholar 

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116

    Article  CAS  PubMed  Google Scholar 

  • Deng N-N, Meng Z-J, Xie R, Ju X-J, Mou C-L, Wang W, Chu L-Y (2011) Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. Lab Chip 11:3963–3969

    Article  CAS  PubMed  Google Scholar 

  • Di Santo R, Digiacomo L, Palchetti S, Palmieri V, Perini G, Pozzi D, Papi M, Caracciolo G (2019) Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery. Nanoscale 11:2733–2741

    Article  PubMed  Google Scholar 

  • van Dijke K, Veldhuis G, Schroën K, Boom R (2009) Parallelized EDGE-based droplet generation (EDGE) devices. Lab Chip 9:2824–2830

    Article  PubMed  Google Scholar 

  • Ding S, Anton N, Vandamme TF, Serra CA (2016) Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview. Expert Opin Drug Deliv 13:1447–1460

    Article  CAS  PubMed  Google Scholar 

  • Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA (2012) Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12:2135–2145

    Article  CAS  PubMed  Google Scholar 

  • Eggersdorfer ML, Zheng W, Nawar S, Mercandetti C, Ofner A, Leibacher I, Koehler S, Weitz DA (2017) Tandem emulsification for high-throughput production of double emulsions. Lab Chip 17:936–942

    Article  CAS  PubMed  Google Scholar 

  • Eusner T, Hale M, Hardt DE (2010) Process robustness of hot embossing microfluidic devices. J Manuf Sci Eng 132

    Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  • Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML (2020) Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother 131:110695

    Article  CAS  PubMed  Google Scholar 

  • Feynman RP (1960) There's plenty of room at the bottom. An invitation to enter a new field of physics. Eng Sci 23:22–36

    Google Scholar 

  • Fontana F, Ferreira MPA, Correia A, Hirvonen J, Santos HA (2016) Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Deliv Sci Technol 34:76–87

    Article  CAS  Google Scholar 

  • Fontana F, Martins JP, Torrieri G, Santos HA (2019) Nuts and bolts: microfluidics for the production of biomaterials. Adv Mater Technol 4:1800611

    Article  Google Scholar 

  • Fontana F, Shahbazi M-A, Liu D, Zhang H, Mäkilä E, Salonen J, Hirvonen JT, Santos HA (2017) Multistaged nanovaccines based on porous silicon@acetalated dextran@cancer cell membrane for cancer immunotherapy. Adv Mater 29:1603239

    Article  Google Scholar 

  • Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19:6315–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502

    Article  PubMed  PubMed Central  Google Scholar 

  • Ftouni J, Penhoat M, Addad A, Payen E, Rolando C, Girardon J-S (2012) Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device. Nanoscale 4:4450–4454

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Yamamoto F, Okamoto K, Shiokawa K, Nomura R (2005) Adsorption of duplex DNA on mesoporous silicas: possibility of inclusion of DNA into their mesopores. Anal Chem 77:8138–8145

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5:9788–9798

    Article  CAS  PubMed  Google Scholar 

  • Garbuzenko OB, Winkler J, Tomassone MS, Minko T (2014) Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir 30:12941–12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  CAS  PubMed  Google Scholar 

  • Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Ahmadvand D, Labrador A, Salentinig S, Yaghmur A (2017) Microfluidic platform for the continuous production and characterization of multilamellar vesicles: a synchrotron small-angle X-ray scattering (SAXS) study. J Phys Chem Lett 8:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117:8447–8480

    Article  CAS  PubMed  Google Scholar 

  • Grigsby CL, Ho Y-P, Lin C, Engbersen JFJ, Leong KW (2013) Microfluidic preparation of polymer-nucleic acid nanocomplexes improves nonviral gene transfer. Sci Rep 3:3155

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11:257–262

    Article  CAS  Google Scholar 

  • Grover WH, Ivester RH, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6:623–631

    Article  CAS  PubMed  Google Scholar 

  • Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B Chem 89:315–323

    Article  CAS  Google Scholar 

  • Hao N, Nie Y, Zhang JXJ (2018) Microfluidic flow synthesis of functional mesoporous silica nanofibers with tunable aspect ratios. ACS Sustain Chem Eng 6:1522–1526

    Article  CAS  Google Scholar 

  • Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78:4976–4984

    Article  CAS  PubMed  Google Scholar 

  • He F, Cheng Y, Xu Z, Liao Y, Xu J, Sun H, Wang C, Zhou Z, Sugioka K, Midorikawa K, Xu Y, Chen X (2010) Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Opt Lett 35:282–284

    Article  CAS  PubMed  Google Scholar 

  • Herranz-Blanco B, Ginestar E, Zhang H, Hirvonen J, Santos HA (2017) Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm 516:100–105

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Zhu S, Jiang Y, Tang G, Pei Y (2009) Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release 133:96–102

    Article  CAS  PubMed  Google Scholar 

  • Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao C-X (2019) Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13:7410–7424

    Article  CAS  PubMed  Google Scholar 

  • Hyuk Im S, Jeong U, Xia Y (2005) Polymer hollow particles with controllable holes in their surfaces. Nat Mater 4:671–675

    Article  CAS  PubMed  Google Scholar 

  • Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4:2077–2087

    Article  CAS  PubMed  Google Scholar 

  • Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    Article  CAS  PubMed  Google Scholar 

  • Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675

    Article  CAS  PubMed  Google Scholar 

  • Jamal F, Jean-Sébastien G, Maël P, Edmond P, Christian R (2012) Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions. Microsyst Technol 18:151–158

    Article  CAS  Google Scholar 

  • Jena RK, Yue CY, Lam YC (2012) Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsyst Technol 18:159–166

    Article  CAS  Google Scholar 

  • Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D (2019) Emulsion techniques for the production of pharmacological nanoparticles. Macromol Biosci 19:e1900063

    Article  PubMed  Google Scholar 

  • Jensen KF (2017) Flow chemistry—microreaction technology comes of age. AICHE J 63:858–869

    Article  CAS  Google Scholar 

  • Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912

    Article  CAS  PubMed  Google Scholar 

  • Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Amer Oil Chem Soc 74:317–321

    Article  CAS  Google Scholar 

  • Khan IU, Serra CA, Anton N, Vandamme TF (2015) Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin Drug Deliv 12:547–562

    Article  PubMed  Google Scholar 

  • Khan SA, Günther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20:8604–8611

    Article  CAS  PubMed  Google Scholar 

  • KianvashRad N, Barkhordari E, Mostafavi SH, Aghajani M (2019) Optimizing microfluidic preparation parameters of nanosuspension to evaluate stability in nanoprecipitation of stable-iodine (127I). SN Appl Sci 1:1054

    Article  CAS  Google Scholar 

  • Kim K, Lee J-B (2007) High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol 13:231–235

    Article  CAS  Google Scholar 

  • Kim S-H, Kim JW, Cho J-C, Weitz DA (2011) Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11:3162–3166

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Kwon S (2006) Design, fabrication and testing of a catalytic microreactor for hydrogen production. J Micromech Microeng 16:1752–1760

    Article  Google Scholar 

  • Kimura N, Maeki M, Sato Y, Note Y, Ishida A, Tani H, Harashima H, Tokeshi M (2018) Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 3:5044–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H (2002) Silicon array of elongated through-holes for monodisperse emulsion droplets. AICHE J 48:1639–1644

    Article  CAS  Google Scholar 

  • Koh CG, Zhang X, Liu S, Golan S, Yu B, Yang X, Guan J, Jin Y, Talmon Y, Muthusamy N, Chan KK, Byrd JC, Lee RJ, Marcucci G, Lee LJ (2010) Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release 141:62–69

    Article  CAS  PubMed  Google Scholar 

  • Köhler JM, Romanus H, Hübner U, Wagner J (2007) Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems. J Nanomater 2007:098134

    Article  Google Scholar 

  • Krishnamoorthy K, Mahalingam M (2015) Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull 5:57–67

    PubMed  PubMed Central  Google Scholar 

  • Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150:1–8

    Article  CAS  Google Scholar 

  • Le TC, Zhai J, Chiu W-H, Tran PA, Tran N (2019) Janus particles: recent advances in the biomedical applications. Int J Nanomedicine 14:6749–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung MHM, Shen AQ (2018) Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia Jurkat cells. Langmuir 34:3961–3970

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fan Y, Kodzius R, Foulds IG (2012a) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18:373–379

    Article  CAS  Google Scholar 

  • Li H, Steckl AJ (2019) Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal Chem 91:352–371

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Valadez AV, Zuo P, Nie Z (2012b) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4:1509–1525

    Article  CAS  PubMed  Google Scholar 

  • Lim J-M, Swami A, Gilson LM, Chopra S, Choi S, Wu J, Langer R, Karnik R, Farokhzad OC (2014) Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8:6056–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726–732

    Article  CAS  Google Scholar 

  • Lin Q, Chen J, Zhang Z, Zheng G (2013) Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine 9:105–120

    Article  Google Scholar 

  • Liu D, Cito S, Zhang Y, Wang C-F, Sikanen TM, Santos HA (2015a) A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv Mater 27:2298–2304

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang H, Cito S, Fan J, Mäkilä E, Salonen J, Hirvonen J, Sikanen TM, Weitz DA, Santos HA (2017b) Core/Shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation. Nano Lett 17:606–614

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2017a) Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17:1856–1883

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2018a) Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 128:54–83

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang H, Herranz-Blanco B, Mäkilä E, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2014) Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery. Small 10:2029–2038

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang H, Mäkilä E, Fan J, Herranz-Blanco B, Wang C-F, Rosa R, Ribeiro AJ, Salonen J, Hirvonen J, Santos HA (2015b) Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials 39:249–259

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Nakajima M, Nishi T, Kimura T (2005) Effect of channel structure on preparation of a water-in-oil emulsion by polymer microchannels. Eur J Lipid Sci Technol 107:481–487

    Article  CAS  Google Scholar 

  • Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA (2020) Microfluidics for production of particles: mechanism, methodology, and applications. Small 16:1904673

    Article  CAS  Google Scholar 

  • Liu Z, Li Y, Li W, Xiao C, Liu D, Dong C, Zhang M, Mäkilä E, Kemell M, Salonen J, Hirvonen JT, Zhang H, Zhou D, Deng X, Santos HA (2018b) Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv Mater 30:1703393

    Article  Google Scholar 

  • Lizotte T (2008) Vacuum isostatic micro molding of microfluidic structures into polytetrafluoroethylene (PTFE) materials paper presented at the SPIE Photonics Europe, Strasbourg, France

    Google Scholar 

  • Manshadi MKD, Khojasteh D, Abdelrehim O, Gholami M, Sanati-Nezhad A (2021) In: Rahimpour MR, Kamali R, Amin Makarem M, Manshadi MKD (eds) Advances in bioenergy and microfluidic applications. Elsevier, pp 387–406

    Chapter  Google Scholar 

  • Martins JP, das Neves J, de la Fuente M, Celia C, Florindo H, Günday-Türeli N, Popat A, Santos JL, Sousa F, Schmid R, Wolfram J, Sarmento B, Santos HA (2020) The solid progress of nanomedicine. Drug Deliv. Transl Res 10:726–729

    Google Scholar 

  • Martins JP, Liu D, Fontana F, Ferreira MPA, Correia A, Valentino S, Kemell M, Moslova K, Mäkilä E, Salonen J, Hirvonen J, Sarmento B, Santos HA (2018b) Microfluidic nanoassembly of bioengineered chitosan-modified FcRn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides. ACS Appl Mater Interfaces 10:44354–44367

    Article  CAS  PubMed  Google Scholar 

  • Martins JP, Torrieri G, Santos HA (2018a) The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 15:469–479

    Article  CAS  PubMed  Google Scholar 

  • Mathaes R, Winter G, Besheer A, Engert J (2015) Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 12:481–492

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • McCreedy T (2001) Rapid prototyping of glass and PDMS microstructures for micro total analytical systems and micro chemical reactors by microfabrication in the general laboratory. Anal Chim Acta 427:39–43

    Article  CAS  Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Tan W-H, Tsuda Y, Takeuchi S (2009) Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 9:2217–2223

    Article  CAS  PubMed  Google Scholar 

  • Muck A, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Výborný Z, Spillman SD, Sridharan G, Schöning MJ (2004) Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. Anal Chem 76:2290–2297

    Article  CAS  PubMed  Google Scholar 

  • Mulligan MK, Rothstein JP (2012) Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid Nanofluid 13:65–73

    Article  CAS  Google Scholar 

  • Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N-T (2012) In: Nguyen N-T (ed) Micromixers (second edition). William Andrew Publishing, Oxford, pp 1–8

    Google Scholar 

  • Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM (2021) Nanomaterials synthesis through microfluidic methods: an updated overview. Nano 11

    Google Scholar 

  • Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–8063

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT (2020) Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 92:150–168

    Article  CAS  PubMed  Google Scholar 

  • Nightingale AM, Bannock JH, Krishnadasan SH, O'Mahony FTF, Haque SA, Sloan J, Drury C, McIntyre R, deMello JC (2013) Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J Mater Chem A 1:4067–4076

    Article  CAS  Google Scholar 

  • Nightingale AM, de Mello JC (2010) Microscale synthesis of quantum dots. J Mater Chem 20:8454–8463

    Article  CAS  Google Scholar 

  • Nisisako T, Ando T, Hatsuzawa T (2012) High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 12:3426–3435

    Article  CAS  PubMed  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293

    Article  CAS  PubMed  Google Scholar 

  • Nunes JK, Tsai SSH, Wan J, Stone HA (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys 46:114002

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes PS, Ohlsson PD, Ordeig O, Kutter JP (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9:145–161

    Article  CAS  Google Scholar 

  • Obeid MA, Khadra I, Albaloushi A, Mullin M, Alyamani H, Ferro VA (2019) Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: physical characteristics, encapsulation efficacy, and drug release. Beilstein J Nanotechnol 10:1826–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odera T, Hirama H, Kuroda J, Moriguchi H, Torii T (2014) Droplet formation behavior in a microfluidic device fabricated by hydrogel molding. Microfluid Nanofluid 17:469–476

    Article  Google Scholar 

  • Ogończyk D, Węgrzyn J, Jankowski P, Dąbrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327

    Article  PubMed  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18:2323–2347

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou T, Mesite SV, Fisher RJ (2009) Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization. Ind Eng Chem Res 48:1761–1771

    Article  CAS  Google Scholar 

  • Papi M, Pozzi D, Palmieri V, Caracciolo G (2022) Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today 43:101403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Han YD, Kim HV, Lee J, Yoon HC, Park S (2018) Double-sided 3D printing on paper towards mass production of three-dimensional paper-based microfluidic analytical devices (3D-μPADs). Lab Chip 18:1533–1538

    Article  CAS  PubMed  Google Scholar 

  • Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentecost AM, Martin RS (2015) Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Anal Methods 7:2968–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  CAS  PubMed  Google Scholar 

  • Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Article  CAS  PubMed  Google Scholar 

  • Rahil Hasan M, Anzar N, Tyagi M, Yadav N, Narang J (2021) In: Hussain CM, Shukla SK, Joshi GM (eds) Functionalized nanomaterials based devices for environmental applications. Elsevier, pp 175–198

    Chapter  Google Scholar 

  • Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406

    Article  CAS  PubMed  Google Scholar 

  • Riahi R, Tamayol A, Shaegh SAM, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2015) Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng 7:101–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12:802–807

    Article  CAS  PubMed  Google Scholar 

  • Rondeau E, Cooper-White JJ (2008) Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 24:6937–6945

    Article  CAS  PubMed  Google Scholar 

  • Russo M, Grimaldi AM, Bevilacqua P, Tammaro O, Netti PA, Torino E (2017) PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine. Nanomedicine 12:2211–2222

    Article  CAS  PubMed  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  CAS  PubMed  Google Scholar 

  • Samaridou E, Heyes J, Lutwyche P (2020) Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv Drug Deliv Rev 154-155:37–63

    Article  CAS  PubMed  Google Scholar 

  • Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X (2018) Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 128:3–28

    Article  CAS  PubMed  Google Scholar 

  • Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31:1099–1115

    Article  CAS  Google Scholar 

  • Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu L-Y, Kim J-W, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11:18–27

    Article  CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5

    Article  Google Scholar 

  • Sharp KV, Adrian RJ (2004) Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids 36:741–747

    Article  CAS  Google Scholar 

  • Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  CAS  PubMed  Google Scholar 

  • Silvestrini S, Carofiglio T, Maggini M (2013) Shape-selective growth of silver nanoparticles under continuous flow photochemical conditions. Chem Commun 49:84–86

    Article  CAS  Google Scholar 

  • Sohrabi S, Kassir N, Keshavarz Moraveji M (2020) Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 10:27560–27574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes J, Kumar CSSR (2006) Microfluidic synthesis of cobalt nanoparticles. Chem Mater 18:2817–2827

    Article  CAS  Google Scholar 

  • Stepanyan R, Lebouille JG, Slot JJ, Tuinier R, Stuart MA (2012) Controlled nanoparticle formation by diffusion limited coalescence. Phys Rev Lett 109:138301

    Article  CAS  PubMed  Google Scholar 

  • Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  CAS  PubMed  Google Scholar 

  • Studart AR, Shum HC, Weitz DA (2009) Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structures. J Phys Chem B 113:3914–3919

    Article  CAS  PubMed  Google Scholar 

  • Stylios GK (2013) There is plenty of room at the bottom, R.P. Feynman. Int J Cloth Sci Technol 25

    Google Scholar 

  • Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B, Shi X, Jiang X (2015) Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater 27:1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Suriya Prabha A, Dorothy R, Jancirani S, Rajendran S, Singh G, Senthil Kumaran S (2020) In: Rajendran S, Mukherjee A, Nguyen TA, Godugu C, Shukla RK (eds) Nanotoxicity. Elsevier, pp 143–165

    Chapter  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  CAS  PubMed  Google Scholar 

  • Thu VT, Mai AN, Le The T, Van Trung H, Thu PT, Tien BQ, Thuat NT, Lam TD (2016) Fabrication of PDMS-based microfluidic devices: application for synthesis of magnetic nanoparticles. J Electron Mater 45:2576–2581

    Article  CAS  Google Scholar 

  • Tomeh MA, Zhao X (2020) Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol Pharm 17:4421–4434

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Nakajima M, Nabetani H, Kikuchi Y, Maruta Y (2001) Production of oil-in-water microspheres using a stainless steel microchannel. J Colloid Interface Sci 237:239–248

    Article  CAS  PubMed  Google Scholar 

  • Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2013) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9:121–134

    Article  Google Scholar 

  • Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007b) Dripping, jetting, drops, and wetting: The magic of microfluidics. MRS Bull 32:702–708

    Article  CAS  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007a) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99:094502

    Article  PubMed  Google Scholar 

  • Valencia PM, Basto PA, Zhang L, Rhee M, Langer R, Farokhzad OC, Karnik R (2010) Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4:1671–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14:45–57

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  • Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I (2013) Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 65:1626–1663

    Article  PubMed  Google Scholar 

  • Wabuyele MB, Ford SM, Stryjewski W, Barrow J, Soper SA (2001) Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis 22:3939–3948

    Article  CAS  PubMed  Google Scholar 

  • Wagner J, Köhler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691

    Article  CAS  PubMed  Google Scholar 

  • Wagner J, Tshikhudo TR, Köhler JM (2008) Microfluidic generation of metal nanoparticles by borohydride reduction. Chem Eng J 135:S104–S109

    Article  CAS  Google Scholar 

  • Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Wallace GG, Higgins MJ, Moulton SE, Wang C (2012) Nanobionics: the impact of nanotechnology on implantable medical bionic devices. Nanoscale 4:4327–4347

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Shum HC, Weitz DA (2009a) Fabrication of monodisperse toroidal particles by polymer solidification in microfluidics. ChemPhysChem 10:641–645

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li W, Zhang L, Ban L, Chen P, Du W, Feng X, Liu B-F (2017) Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Appl Mater Interfaces 9:27441–27452

    Article  CAS  PubMed  Google Scholar 

  • Wang JT, Wang J, Han JJ (2011) Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 7:1728–1754

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-A, Wang J-X, Li M, Shao L, Chen J-F, Gu L, An Y-T (2009b) Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor. Chem Eng J 149:473–478

    Article  CAS  Google Scholar 

  • Wang S, Wannasarit S, Figueiredo P, Li J, Correia A, Xia B, Wiwattanapatapee R, Hirvonen J, Liu D, Li W, Santos HA (2020) Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Mater Horiz 7:1573–1580

    Article  CAS  Google Scholar 

  • Wang W, Zhang M-J, Xie R, Ju X-J, Yang C, Mou C-L, Weitz DA, Chu L-Y (2013) Hole–shell microparticles from controllably evolved double emulsions. Angew Chem Int Ed 52:8084–8087

    Article  CAS  Google Scholar 

  • Webb C, Forbes N, Roces CB, Anderluzzi G, Lou G, Abraham S, Ingalls L, Marshall K, Leaver TJ, Watts JA, Aylott JW, Perrie Y (2020) Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes. Int J Pharm 582:119266

    Article  CAS  PubMed  Google Scholar 

  • Weng C-H, Huang C-C, Yeh C-S, Lei H-Y, Lee G-B (2008) Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. J Micromech Microeng 18:035019

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  • Wu M-H, Huang S-B, Lee G-B (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956

    Article  CAS  PubMed  Google Scholar 

  • Wujcik EK, Monty CN (2013) Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:233–249

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44:724–728

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Guo F, Kiraly B, Mao X, Lu M, Leong KW, Huang TJ (2012) Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip 12:2097–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Chen Z, Chen G (2009) Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates. Electrophoresis 30:4225–4229

    Article  CAS  PubMed  Google Scholar 

  • Yeh C-H, Lin P-W, Lin Y-C (2009) Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluid Nanofluid 8:115

    Article  Google Scholar 

  • Ying Y, Chen G, Zhao Y, Li S, Yuan Q (2008) A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors. Chem Eng J 135:209–215

    Article  CAS  Google Scholar 

  • Yu B, Lee RJ, Lee LJ (2009) Microfluidic methods for production of liposomes. Methods Enzymol 465:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chiao M (2015) Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng 35:143–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu D, Shahbazi M-A, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA (2014) Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater 26:4497–4503

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang W, Ju X-J, Xie R, Liu Z, Chu L-Y (2015) Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv 5:5638–5646

    Article  CAS  Google Scholar 

  • Zhang P, Du C, Huang T, Hu S, Bai Y, Li C, Feng G, Gao Y, Li Z, Wang B, Hirvonen JT, Fan J, Santos HA, Liu D (2022) Surface adsorption-mediated ultrahigh efficient peptide encapsulation with a precise ratiometric control for type 1 and 2 diabetic therapy. Small:2200449

    Google Scholar 

  • Zhao C-X, Middelberg APJ (2016) In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Cham, pp 455–473

    Chapter  Google Scholar 

  • Zhao Y, Shum HC, Chen H, Adams LL, Gu Z, Weitz DA (2011) Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc 133:8790–8793

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75

    Article  CAS  Google Scholar 

  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731

    Article  PubMed  PubMed Central  Google Scholar 

  • Zook JM, Vreeland WN (2010) Effects of temperature, acyl chain length, and flow-rate ratio on liposome formation and size in a microfluidic hydrodynamic focusing device. Soft Matter 6:1352–1360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Sigrid Jusélius Foundation and the Academy of Finland (Grant No. 331151) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder A. Santos .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, J.P., Santos, H.A. (2023). Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems. In: Lamprou, D. (eds) Nano- and Microfabrication Techniques in Drug Delivery . Advanced Clinical Pharmacy - Research, Development and Practical Applications, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26908-0_13

Download citation

Publish with us

Policies and ethics