Skip to main content

Solution Processable Metal-Halide Perovskites for Printable and Flexible Ionizing Radiation Detectors

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors

Abstract

Detection of ionizing radiation is one of the foundations of modern society, with critical technological applications in medical diagnostics and treatment, space exploration, the nuclear energy industry, and border security. However, the rapidly increasing use of radiation in recent decades has correlated to higher radiation exposure in the population, with corresponding harmful effects to the health of workers and patients. Active monitoring of radiation doses has now become compulsory in many countries to instantaneously detect, evaluate, and correct for any deviations from planned exposure events. Current technologies for detecting ionizing radiation are composed of thick and mechanically rigid solid-state semiconductors, including silicon, selenium, and cadmium telluride; however, these materials are expensive to manufacture and cannot be easily fabricated into flexible or large-area sensing arrays. While such technologies exhibit excellent performance, they cannot satisfy all the demands for real-time monitoring of radiation in complex environments, where materials and devices should ideally be portable, lightweight, flexible, and with low operating power requirements. New hybrid materials must therefore be developed for radiation detection, combining the performance of inorganic semiconductors with these other desirable properties. In this chapter, we review the key material properties of metal-halide perovskites for printable ionizing radiation detection, techniques to form them into devices from solution, and the breakthroughs enabled by, and challenges remaining for, printable perovskites for radiation detection. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith, M. J., et al. (2020). Printable organic semiconductors for radiation detection: From fundamentals to fabrication and functionality. Frontiers in Physics, 8.

    Google Scholar 

  2. Posar, J. A., et al. (2021). Polymer photodetectors for printable, flexible, and fully tissue equivalent X-ray detection with zero-bias operation and ultrafast temporal responses. Advanced Materials Technologies, 6(9), 2001298–n/a.

    Google Scholar 

  3. Wei, H., & Huang, J. (2019). Halide lead perovskites for ionizing radiation detection. Nature Communications, 10(1), 1066–1066.

    Article  Google Scholar 

  4. Basiricò, L., Ciavatti, A., & Fraboni, B. (2021). Solution-grown organic and perovskite X-ray detectors: A new paradigm for the direct detection of ionizing radiation. Advanced Materials Technologies, 6(1), 2000475–n/a.

    Google Scholar 

  5. Attix, F. H. (1986). Introduction to radiological physics and radiation dosimetry. Wiley.

    Book  Google Scholar 

  6. Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). Wiley.

    Google Scholar 

  7. Hubbell, J. H., & Seltzer, S. M. (2004). X-ray mass attenuation coefficients NIST standard reference database 126. Radiation Physics Division, PML, NIST.

    Google Scholar 

  8. De Martin, E., et al. (2021). On the evaluation of edgeless diode detectors for patient-specific QA in high-dose stereotactic radiosurgery. Physica Medica, 89, 20–28.

    Article  Google Scholar 

  9. Fidanzio, A., et al. (2000). PTW-diamond detector: Dose rate and particle type dependence. Medical Physics (Lancaster), 27(11), 2589–2593.

    Google Scholar 

  10. Martin, C. (2007). The importance of radiation quality for optimisation in radiology. Biomedical Imaging and Intervention Journal, 3(2), e38–e38.

    Article  MathSciNet  Google Scholar 

  11. Posar, J. A., et al. (2020). Characterization of a plastic dosimeter based on organic semiconductor photodiodes and scintillator. Physics and Imaging in Radiation Oncology, 14, 48–52.

    Article  Google Scholar 

  12. Griffith, M. J., et al. (2019). Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. Nanotechnology, 31(9), 92002–092002.

    Article  Google Scholar 

  13. Klein, C. A. (1968). Bandgap dependence and related features of radiation ionization energies in semiconductors. Journal of Applied Physics, 39(4), 2029–2038.

    Article  Google Scholar 

  14. Zhao, Y., & Zhu, K. (2016). Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 45(3), 655–689.

    Article  Google Scholar 

  15. Kim, T. W., & Park, N.-G. (2020). Methodologies for structural investigations of organic lead halide perovskites. Materials Today (Kidlington, England), 38, 67–83.

    Article  Google Scholar 

  16. Noh, J. H., et al. (2013). Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters, 13(4), 1764–1769.

    Article  MathSciNet  Google Scholar 

  17. Li, Z., et al. (2016). Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284–292.

    Article  MathSciNet  Google Scholar 

  18. García-Fernández, A., et al. (2019). Hybrid lead halide [(CH3)2NH2]PbX3 (X = Cl− and Br−) hexagonal perovskites with multiple functional properties. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 7(32), 10008–10018.

    Article  Google Scholar 

  19. Akkerman, Q. A., et al. (2018). Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 17(5), 394–405.

    Article  Google Scholar 

  20. Huang, H., et al. (2017). Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2(9), 2071–2083.

    Article  MathSciNet  Google Scholar 

  21. Waseda, Y., Matsubara, E., & Shinoda, K. (Eds.). (2011). X-ray diffraction crystallography introduction, examples and solved problems (1st ed.). Springer.

    Google Scholar 

  22. Kisi, E. H., & Howard, C. J. (2008) Applications of neutron powder diffraction. In: Oxford series on neutron scattering in condensed matter, 15. : Oxford University Press.

    Google Scholar 

  23. Vegard, L. (1921). Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, 5, 17–26.

    Article  Google Scholar 

  24. Denton, A. R., & Ashcroft, N. W. (1991). Vegard’s law. Physical Review. A, Atomic, Molecular, and Optical Physics, 43(6), 3161–3164.

    Article  Google Scholar 

  25. Sears, V. F. (1992). Neutron scattering lengths and cross sections. Neurtron News, 3, 26–37.

    Article  Google Scholar 

  26. Weller, M. T., et al. (2015). Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. The Journal of Physical Chemistry Letters, 6(16), 3209–3212.

    Article  Google Scholar 

  27. Pistor, P., et al. (2014). Monitoring the phase formation of coevaporated lead halide perovskite thin films by in situ X-ray diffraction. The Journal of Physical Chemistry Letters, 5(19), 3308–3312.

    Article  Google Scholar 

  28. Barrit, D., et al. (2022). Processing of lead halide perovskite thin films studied with in-situ real-time X-ray scattering. ACS Applied Materials & Interfaces, 14(23), 26315–26326.

    Article  Google Scholar 

  29. Fransishyn, K. M., Kundu, S., & Kelly, T. L. (2018). Elucidating the failure mechanisms of perovskite solar cells in humid environments using in situ grazing-incidence wide-angle X-ray scattering. ACS Energy Letters, 3(9), 2127–2133.

    Article  Google Scholar 

  30. Weller, M. T., et al. (2015). Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chemical Communications (Cambridge, England), 51(20), 4180–4183.

    Article  Google Scholar 

  31. Park, J.-S., et al. (2015). Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal. The Journal of Physical Chemistry Letters, 6(21), 4304–4308.

    Article  Google Scholar 

  32. Tao, S., et al. (2019). Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications, 10(1), 2560–2560.

    Article  MathSciNet  Google Scholar 

  33. Saparov, B., & Mitzi, D. B. (2016). Organic–inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 116(7), 4558–4596.

    Article  Google Scholar 

  34. Zhang, Y., et al. (2019). Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 13(2), 2520–2525.

    Article  Google Scholar 

  35. Wang, G., et al. (2015). Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 1(9), e1500613–e1500613.

    Article  Google Scholar 

  36. Gao, H., et al. (2018). Bandgap engineering of single-crystalline perovskite arrays for high-performance photodetectors. Advanced Functional Materials, 28(46), 1804349–n/a.

    Google Scholar 

  37. Carlé, J. E., et al. (2014). Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2(7), 1290–1297.

    Article  Google Scholar 

  38. Cooling, N. A., et al. (2016). A low-cost mixed fullerene acceptor blend for printed electronics. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 4(26), 10274–10281.

    Article  Google Scholar 

  39. Griffith, M. J., et al. (2015). Roll-to-roll sputter coating of aluminum cathodes for large-scale fabrication of organic photovoltaic devices. Energy Technology (Weinheim, Germany), 3(4), 428–436.

    Google Scholar 

  40. Al-Ahmad, A. Y., et al. (2020). A nuanced approach for assessing OPV materials for large scale applications. Sustainable Energy & Fuels, 4(2), 94–949.

    Article  MathSciNet  Google Scholar 

  41. Carlé, J. E., et al. (2017). Overcoming the scaling lag for polymer solar cells. Joule, 1(2), 274–289.

    Article  Google Scholar 

  42. Yakunin, S., et al. (2015). Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 9(7), 444–449.

    Article  Google Scholar 

  43. Qian, W., et al. (2021). An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 4(3), 942–954.

    Article  Google Scholar 

  44. Haruta, Y., et al. (2020). Fabrication of CsPbBr3 thick films by using a mist deposition method for highly sensitive X-ray detection. MRS Advances, 5(8–9), 395–401.

    Article  Google Scholar 

  45. Haruta, Y., et al. (2019). Fabrication of (101)-oriented CsPbBr3 thick films with high carrier mobility using a mist deposition method. Applied Physics Express, 12(8).

    Google Scholar 

  46. Haruta, Y., et al. (2021). Columnar grain growth of lead-free double perovskite using mist deposition method for sensitive X-ray detectors. Crystal Growth & Design, 21(7), 4030–4037.

    Article  Google Scholar 

  47. Xu, X., et al. (2021). Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Advanced Science, 8(21), 2102730–n/a.

    Google Scholar 

  48. Kim, Y. C., et al. (2017). Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 550(7674), 87–91.

    Article  Google Scholar 

  49. Deng, Y., et al. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5), 1544–1550.

    Article  Google Scholar 

  50. Haruta, Y., et al. (2022). Scalable fabrication of metal halide perovskites for direct X-ray flat-panel detectors: A perspective. Chemistry of Materials, 34(12), 5323–5333.

    Article  Google Scholar 

  51. Xia, M., et al. (2022). Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Advanced Functional Materials, 32(16), 2110729–n/a.

    Google Scholar 

  52. Dong, S., et al. (2022). Green solvent blade-coated MA 3 Bi 2 I 9 for direct-conversion X-ray detectors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 10(16), 6236–6242.

    Article  MathSciNet  Google Scholar 

  53. He, X., et al. (2022). Quasi-2D perovskite thick film for X-ray detection with low detection limit. Advanced Functional Materials, 32(7), 2109458–n/a.

    Google Scholar 

  54. Huang, S. H., et al. (2020). Toward all slot-die fabricated high efficiency large area perovskite solar cell using rapid near infrared heating in ambient air. Advanced Energy Materials, 10(37), 2001567–n/a.

    Google Scholar 

  55. Li, J., et al. (2021). 20.8% Slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Advanced Energy Materials, 11(10), n/a.

    Google Scholar 

  56. Andersen, T. R., et al. (2016). Fully roll-to-roll prepared organic solar cells in normal geometry with a sputter-coated aluminium top-electrode. Solar Energy Materials and Solar Cells, 149, 103–109.

    Article  Google Scholar 

  57. Andersen, T. R., et al. (2016). Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 4(41), 15986–15996.

    Article  Google Scholar 

  58. Griffith, M. J., et al. (2021). Controlling nanostructure in inkjet printed organic transistors for pressure sensing applications. Nanomaterials (Basel, Switzerland), 11(5), 1185.

    Article  Google Scholar 

  59. Griffith, M. J., et al. (2014). Printable sensors for explosive detonation. Applied Physics Letters, 105(14), 143301.

    Article  Google Scholar 

  60. Basaran, O. A., Gao, H., & Bhat, P. P. (2013). Nonstandard Inkjets. Annual Review of Fluid Mechanics, 45(1), 85–113.

    Article  MATH  Google Scholar 

  61. Liu, J., et al. (2019). Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Advanced Materials, 31(1901644).

    Google Scholar 

  62. Mescher, H., et al. (2020). Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Applied Materials & Interfaces, 12(13), 15774–15784.

    Article  MathSciNet  Google Scholar 

  63. Glushkova, A., et al. (2021). Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano, 15(3), 4077–4084.

    Article  Google Scholar 

  64. Mescher, H., Hamann, E., & Lemmer, U. (2019). Simulation and design of folded perovskite X-ray detectors. Scientific Reports, 9(1), 5231–5231.

    Article  Google Scholar 

  65. Griffith, M. J., et al. (2016). Combining printing, coating, and vacuum deposition on the roll-to-roll scale: A hybrid organic photovoltaics fabrication. IEEE Journal of Selected Topics in Quantum Electronics, 22(1), 112–125.

    Article  Google Scholar 

  66. Kim, Y. Y., et al. (2019). Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Advanced Science, 6(7), 1802094–n/a.

    Google Scholar 

  67. Dou, B., et al. (2018). Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 3(10), 2558–2565.

    Article  Google Scholar 

  68. Galagan, Y., et al. (2018). Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Advanced Energy Materials, 8(32), 1801935–n/a.

    Google Scholar 

  69. Li, H., et al. (2022). Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-micro Letters, 14(1), 79–79.

    Article  MathSciNet  Google Scholar 

  70. Lee, C., et al. (2010). A novel method to guarantee the specified thickness and surface roughness of the roll-to-roll printed patterns using the tension of a moving substrate. Journal of Microelectromechanical Systems, 19(5), 1243–1253.

    Article  Google Scholar 

  71. Benitez-Rodriguez, J. F., et al. (2021). Roll-to-roll processes for the fabrication of perovskite solar cells under ambient conditions. Solar RRL, 5(9), 2100341–n/a.

    Google Scholar 

  72. Kim, J., et al. (2017). Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Letters, 2(9), 1978–1984.

    Article  Google Scholar 

  73. Shi, L., et al. (2020). Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 368(6497).

    Google Scholar 

  74. Anderson, D., et al. (2019). Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors. MRS Communications, 9(4), 1206–1213.

    Article  Google Scholar 

  75. Sunahara, K., et al. (2013). A nonconjugated bridge in dimer-sensitized solar cells retards charge recombination without decreasing charge injection efficiency. ACS Applied Materials & Interfaces, 5(21), 10824–10829.

    Article  Google Scholar 

  76. Rong, Y., et al. (2018). Challenges for commercializing perovskite solar cells. Science, 361(6408), 1214.

    Article  Google Scholar 

  77. Chen, Y., et al. (2018). Large-area perovskite solar cells – A review of recent progress and issues. RSC Advances, 8(19), 1489–1158.

    Article  Google Scholar 

  78. Posar, J. A., et al. (2021). Towards high spatial resolution tissue-equivalent dosimetry for microbeam radiation therapy using organic semiconductors. Journal of Synchrotron Radiation, 28(5), 1444–1454.

    Article  Google Scholar 

  79. Ho-Baillie, A. W. Y., et al. (2021). Deployment opportunities for space photovoltaics and the prospects for perovskite solar cells. Advanced Materials Technologies, 2101059.

    Google Scholar 

  80. Hu, M., et al. (2020). Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Applied Materials & Interfaces, 12(14), 16592–16600.

    Article  Google Scholar 

  81. Pan, L., et al. (2021). Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nature Communications, 12(1), 5258–5258.

    Article  Google Scholar 

  82. Wei, H., et al. (2017). Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 16(8), 826–833.

    Article  Google Scholar 

  83. Basiricò, L., et al. (2019). Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Advanced Functional Materials, 29(34), 1902346.

    Article  Google Scholar 

  84. Bruzzi, M., et al. (2019). First proof-of-principle of inorganic perovskites clinical radiotherapy dosimeters. APL Materials, 7(5), 51101–051101-6.

    Google Scholar 

  85. Lédée, F., et al. (2022). Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Advanced Optical Materials, 10(1), 2101145.

    Article  Google Scholar 

  86. Gill, H. S., et al. (2018). Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Physics in Medicine, 5(C), 20–23.

    Article  Google Scholar 

  87. Hamukwaya, S. L., et al. (2022). A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings, 12(2), 252.

    Article  Google Scholar 

  88. Bruzzi, M., & Talamonti, C. (2021). Characterization of crystalline CsPbBr3 perovksite dosimeters for clinical radiotherapy. Frontiers in Physics, 9.

    Google Scholar 

  89. Li, X., et al. (2016). Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Advanced Functional Materials, 26(32), 5903–5912.

    Article  Google Scholar 

  90. Yan, Y., et al. (2021). Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites. Nature Communications, 12(1), 6603–6603.

    Article  Google Scholar 

  91. Xiao, B., et al. (2021). Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(22), 1329–13219.

    Google Scholar 

  92. Posar, J. A., et al. (2020). Characterization of an organic semiconductor diode for dosimetry in radiotherapy. Medical Physics (Lancaster), 47(8), 3658–3668.

    Google Scholar 

  93. Ciavatti, A., et al. (2021). High-sensitivity flexible X-ray detectors based on printed perovskite inks. Advanced Functional Materials, 31(11), 2009072.

    Article  Google Scholar 

  94. Jang, J., et al. (2021). Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites. Advanced materials (Weinheim), 33(30), 2008539–n/a.

    Google Scholar 

  95. Kubicki, D. J., et al. (2018). Formation of stable mixed guanidinium–methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. Journal of the American Chemical Society, 140(9), 3345–3351.

    Article  Google Scholar 

  96. Saliba, M., et al. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989–1997.

    Article  Google Scholar 

  97. Posar, J. A., Petasecca, M., & Griffith, M. J. (2021). A review of printable, flexible and tissue equivalent materials for ionizing radiation detection. Flexible and Printed Electronics.

    Google Scholar 

  98. Lang, F., et al. (2018). Influence of radiation on the properties and the stability of hybrid perovskites. Advanced Materials, 30(3), 1702905.

    Article  Google Scholar 

  99. Paternò, G. M., et al. (2019). Perovskite solar cell resilience to fast neutrons. Sustainable Energy & Fuels, 3(1), 2561–2566.

    Article  Google Scholar 

  100. Yang, S., et al. (2019). Organohalide lead perovskites: More stable than glass under gamma-ray radiation. Advanced Materials, 31, 1805547.

    Article  Google Scholar 

  101. Xu, Q., et al. (2021). Effect of methylammonium lead tribromide perovskite based-photoconductor under gamma photons radiation. Radiation Physics and Chemistry, 181, 109337.

    Article  Google Scholar 

  102. Boldyreva, A. G., et al. (2020). Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. The Journal of Physical Chemistry Letters, 11(7), 2630–2636.

    Article  Google Scholar 

  103. Boldyreva, A. G., et al. (2019). γ-ray-induced degradation in the triple-cation perovskite solar cells. The Journal of Physical Chemistry Letters, 10(4), 813–818.

    Article  Google Scholar 

  104. Large, M. J., et al. (2021). Flexible polymer X-ray detectors with non-fullerene acceptors for enhanced stability: Toward printable tissue equivalent devices for medical applications. ACS Applied Materials & Interfaces.

    Google Scholar 

  105. van der Salm, H., et al. (2015). Probing Donor–acceptor interactions in meso-substituted Zn(II) porphyrins using resonance Raman spectroscopy and computational chemistry. Journal of physical chemistry. C, 119(39), 22379–22391.

    Article  Google Scholar 

  106. Wang, C., et al. (2018). Environmental surface stability of the MAPbBr3 single crystal. Journal of Physical Chemistry C, 122(6), 3513–3522.

    Article  Google Scholar 

  107. Armaroli, G., et al. (2021). X-ray-induced modification of the photophysical properties of MAPbBr3 single crystals. ACS Applied Materials & Interfaces, 13(49), 58301–58308.

    Article  Google Scholar 

  108. Lang, F., et al. (2016). Radiation hardness and self-healing of perovskite solar cells. Advanced Materials, 28, 8726–8731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Posar, J.A., Liao, C., Tegg, L., Ho-Baillie, A., Petasecca, M., Griffith, M.J. (2023). Solution Processable Metal-Halide Perovskites for Printable and Flexible Ionizing Radiation Detectors. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics