Skip to main content

Combating Climate Change with Phytoremediation. Is It Possible?

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022) (ICoWEFS 2022)

Abstract

Soil contamination causes several environmental problems such as contamination of water resources, desertification, contamination of food crops, which, directly or indirectly, may bring health problems to humans. Therefore, there is a need to decontaminate the soils. Phytoremediation, the decontamination using plants, is an interesting alternative, especially when energy crops are adopted. Most of the energy crops are considered tolerant to contaminated soils, and the action merges the economical exploitation of the biomass for bioenergy or biomaterials, bringing additional income, with the decontamination action. Moreover, its use brings additional environmental returns, such as, the reduction of greenhouse gases and fossil energy savings, thus serving to combat climate change. In addition, phytoremediation with energy crops may bring to rural areas social benefits, and its launch on contaminated land, reduces competition for feed and food and land-use conflicts. However, the soil marginality and affect the productivity and biomass characteristics, threatening the environmental benefits and the economic value. In this context, it was reviewed the production of these crops in heavy metal contaminated soils, with a focus on the environmental aspects and the technological hindrances related with biomass quality. Ultimately, a critical evaluation of the literature data is made, and menaces and prospects are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbosa, B., Fernando, A.L.: Aided Phytostabilization of mine waste. In: Prasad, M.N.V., Favas, P.J.C., Mait,i S.K. (eds.) Bio-Geotechnologies for Mine Site Rehabilitation, Elsevier Inc., UK, 708, pp. 147–158 (2018). https://doi.org/10.1016/B978-0-12-812986-9.00009-9

  2. Barbosa, B., Costa, J., Boléo, S., Duarte, M.P., Fernando, A.L.: Phytoremediation of inorganic compounds. In: Ribeiro, A.B., Mateus, E.P., Couto, N. (eds.) Electrokinetics Across Disciplines and Continents, pp. 373–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-20179-5_19

    Chapter  Google Scholar 

  3. Barbosa, B., Costa, J., Fernando, A.L.: Production of energy crops in heavy metals contaminated land: opportunities and risks. In: Li, R., Monti, A. (eds.) Land Allocation for Biomass Crops, pp. 83–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74536-7_5

    Chapter  Google Scholar 

  4. Fernando, A.L., Boléo, S., Barbosa, B., Costa, J., Duarte, M.P., Monti, A.: Perennial grass production opportunities on marginal mediterranean land. BioEnergy Res. 8, 1523–1537 (2015). https://doi.org/10.1007/s12155-015-9692-0

    Article  Google Scholar 

  5. Oliveira, J.S., Duarte, M.P., Christian, D.G., Eppel-Hotz, A.: Fernando AL: environmental aspects of Miscanthus production. In: Jones, M.B., Walsh, M. (eds.), Miscanthus for energy and fibre. James & James (Science Publishers) Ltd., London, UK, 192, pp. 172–178 (2001)

    Google Scholar 

  6. Fernando, A.L., Rettenmaier, N., Soldatos, P., Panoutsou, C.: Sustainability of perennial crops production for bioenergy and bioproducts. In: Alexopoulou, E. (ed.) Perennial Grasses for Bioenergy and Bioproducts, Academic Press, Elsevier Inc., UK, 292, pp. 245–283 (2018). https://doi.org/10.1016/B978-0-12-812900-5.00008-4

  7. Fernando, A.L., Godovikova, V., Oliveira, J.F.S.: Miscanthus x giganteus: contribution to a sustainable agriculture of a future/present – oriented biomaterial. Mater. Sci. Forum, Adv. Mater. Forum II(455–456), 437–441 (2004)

    Article  Google Scholar 

  8. Fernando, A.L., Barbosa, B., Costa, J., Papazoglou, E.G.: Giant reed (Arundo donax L.): a multipurpose crop bridging phytoremediation with sustainable bio-economy, In: Prasad, M.N.V. (ed.) Bioremediation and Bioeconomy, Elsevier Inc., UK, 698, pp. 77–95 (2016). https://doi.org/10.1016/B978-0-12-802830-8.00004-6

  9. Sidella, S., Barbosa, B., Costa, J., Cosentino, S.L., Fernando, A.L.: Screening of giant reed clones for phytoremediation of lead contaminated soils. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds.) Perennial Biomass Crops for a Resource-Constrained World, pp. 191–197. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44530-4_16

    Chapter  Google Scholar 

  10. Barbosa, B., Costa, J., Fernando, A.L., Papazoglou, E.G.: Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crops Prod. 68, 17–23 (2015). https://doi.org/10.1016/j.indcrop.2014.07.007

    Article  CAS  Google Scholar 

  11. Barbosa, B., et al.: Phytoremediation of heavy metal-contaminated soils using the perennial energy crops miscanthus spp. and Arundo donax L. BioEnergy Res. 8, 1500–1511 (2015). https://doi.org/10.1007/s12155-015-9688-9

  12. Papazoglou, E.G., Fernando, A.L.: Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.) grown on heavy metal contaminated soil. Indus. Crops Prod. 107, 463–471 (2017). https://doi.org/10.1016/j.indcrop.2017.06.051

  13. Von Cossel, M., et al.: Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 9(10), 605 (2019). https://doi.org/10.3390/agronomy9100605

    Article  CAS  Google Scholar 

  14. Fernando, A.L., Duarte, M.P., Almeida, J., Boléo, S., Mendes, B.: Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod. Biorefin. 4, 594–604 (2010). https://doi.org/10.1002/bbb.249

    Article  CAS  Google Scholar 

  15. Dauber, J., et al.: Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7, 5–50 (2012). https://doi.org/10.3897/biorisk.7.3036

    Article  Google Scholar 

  16. Abreu, M., et al.: Gírio, F: Evaluation of the potential of biomass to energy in Portugal-conclusions from the CONVERTE project. Energies 13(4), 937 (2020). https://doi.org/10.3390/en13040937

    Article  Google Scholar 

  17. Von Cossel, M., et al.: Marginal agricultural land low-input systems for biomass production. Energies 12(16), 3123 (2019). https://doi.org/10.3390/en12163123

    Article  CAS  Google Scholar 

  18. Bouton, J.: Improvement of switchgrass as a bioenergy crop.  In: Vermerris, W. (eds.) Genetic Improvement of Bioenergy Crops, pp. 309–345. Springer, New York (2008). https://doi.org/10.1007/978-0-387-70805-8_11

  19. Barbosa, C.H., et al.: A new insight on cardoon: exploring new uses besides cheese making with a view to zero waste. Foods 9(5), 564 (2020). https://doi.org/10.3390/foods9050564

    Article  CAS  Google Scholar 

  20. Zanetti, F., Monti, A., Berti, M.T.: Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Ind. Crops Prod. 50, 580–595 (2013). https://doi.org/10.1016/j.indcrop.2013.08.030

    Article  CAS  Google Scholar 

  21. Fernando, A.L., Costa, J., Barbosa, B., Monti, A., Rettenmaier, N.: Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenerg. 111, 174–186 (2018). https://doi.org/10.1016/j.biombioe.2017.04.005

    Article  Google Scholar 

  22. Scordia, D., et al.: Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy, pp. 1–25 (2022). https://doi.org/10.1111/gcbb.12935

  23. Gomes, L.A., Costa, J., Santos, F., Fernando, A.L.: Environmental and socio-economic impact assessment of the switchgrass production in heavy metals contaminated soils. In: Machado, J., Soares, F., Trojanowska, J., Ottaviano, E. (eds.) Innovations in Mechanical Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79165-0_38

  24. Boléo, S., Fernando, A.L., Duarte, M.P., Mendes, B.: Environmental and socio-economic impact assessment of the Miscanthus production in Zn contaminated soils. In: Castro, F., Vilarinho, C., Carvalho, J., Castro, A., Araújo, J., Pedro, A. (eds.) Book of proceedings 2nd International Conference: Wastes: solutions, treatments and opportunities, 11–13 September 2013, Braga, Portugal, CVR, Centro de Valorização de Resíduos, pp. 657–662 (2013)

    Google Scholar 

  25. Schmidt, T., Fernando, A.L., Monti, A., Rettenmaier, N.: Life cycle assessment of bioenergy and bio-based products from perennial grasses cultivated on marginal land in the mediterranean region. BioEnergy Res. 8, 1548–1561 (2015). https://doi.org/10.1007/s12155-015-9691-1

    Article  Google Scholar 

  26. Fernando, A.L., Duarte, M.P., Vatsanidou, A., Alexopoulou, E.: Environmental aspects of fiber crops cultivation and use. Ind. Crops Prod. 68, 105–115 (2015). https://doi.org/10.1016/j.indcrop.2014.10.003

    Article  Google Scholar 

  27. Ardente, F., Beccali, M., Cellura, M., Mistretta, M.: Building energy performance: A LCA case study of kenaf-fibers insulation bord. Energ. Buildings 40, 1–10 (2008)

    Article  Google Scholar 

  28. Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Recy. 53, 434–447 (2009)

    Article  Google Scholar 

  29. Boléo, S., Fernando, A.L., Barbosa, B., Costa, J., Duarte, M.P., Mendes, B.: Remediation of soils contaminated with Zinc by Miscanthus. In: Vilarinho, C., Castro, F., Russo, M. (eds.) WASTES 2015–Solutions, Treatments and Opportunities: Selected papers from the 3rd Edition of the International Conference on Wastes: Solution, Treatments and Opportunities, Viana do Caste-lo, Portugal, September 2015, pp. 37–42. CRC Press, Taylor & Francis Group (2015)

    Chapter  Google Scholar 

  30. Fernando, A.L., Barbosa, B., Costa, J., Alexopoulou, E.: Perennial grass production opportunities and constraints on marginal soils. In: Faaij, A.P.C., Baxter, D., Grassi, A., Helm, P. (eds.) Proceedings of the 24rd European Biomass Conference and Exhibition, Setting the course for a Biobased Economy, Amsterdam, The Netherlands, June 2016, ETA-Florence Renewable Energies, pp. 133 – 137 (2016)

    Google Scholar 

  31. Pidlisnyuk, V., Stefanovska, T., Lewis, E.E., Erickson, L.E., Davis, L.C.: Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant. Sci. 33, 1–19 (2014)

    Article  Google Scholar 

  32. Cumbane, B., et al.: Is the production of Kenaf in heavy metal contaminated soils a sustainable option?. In: Wastes: Solutions, Treatments and Opportunities III, pp. 512–517. CRC Press (2019)

    Google Scholar 

  33. Arora, K., Sharma, S., Monti, A.: Bio-remediation of Pb and Cd polluted soils by switchgrass: a case study in India. Int. J. Phytoremediation 18, 704–709 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by national funding by FCT, Foundation for Science and Technology, through the individual PhD research grant (SFRH/BD/144346/2019) of J.R.A.P. This work was also supported by the MEtRICs unit which is funded by national funds from FCT/MCTES (UIDB/04077/2020 and UIDP/04077/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Fernando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, L.A. et al. (2023). Combating Climate Change with Phytoremediation. Is It Possible?. In: Duque de Brito, P.S., et al. Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022). ICoWEFS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-26849-6_52

Download citation

Publish with us

Policies and ethics