Skip to main content

Future Developments in Brain/Neural–Computer Interface Technology

  • Chapter
  • First Online:
Policy, Identity, and Neurotechnology

Abstract

The idea of creating a direct link between the brain and a computer, once exotic and for many people inconceivable, is steadily becoming mainstream. Building on decade-long academic research and fueled by successful demonstrations of brain-controlled devices, tech investors are now increasingly engaged in developing and patenting such technology. While early conceptions focused on assistive applications, e.g., to control a prosthesis or restore communication, new paradigms are implemented to enhance brain function to or above the norm. Moreover, so-called bidirectional brain/neural-computer interfaces could restore sensory capacities or suppress pathological brain activity in neuropsychiatric disorders. Merging this technology with artificial intelligence (AI) promises to increase applicability in various medical and non-medical applications. The rapid advancements of such AI-enhanced brain–computer interfaces (BCIs) beyond the medical field raise many concerns, including dual-use, cybersecurity, and brain-hacking. This chapter will provide an overview of the most innovative trends in current brain/neural–interface technology and elaborate on the associated technical and conceptual challenges ahead. While it is very difficult to anticipate which applications will evolve, we will outline BCI technology’s most likely course of evolution and its implications for society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson F, Jung CG. Psycho-physical investigations with the galvanometer and pneumograph in normal and insane individuals. Brain. 1907;30(2):153–218.

    Article  Google Scholar 

  2. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929;87(1):527–70.

    Article  Google Scholar 

  3. Gibbs FA, Davis H, Lennox WG. The electro-encephalogram in epilepsy and in conditions of impaired consciousness. Arch Neurol Psychiatr. 1935;34(6):1133–48.

    Article  Google Scholar 

  4. Estrin T. The UCLA Brain Research Institute data processing laboratory: In Proceedings of ACM conference on History of medical informatics. Bethesda, MD: Association for Computing Machinery; 1987. p. 75–83.

    Google Scholar 

  5. Walter WG. An automatic low frequency analyser. Electron Eng. 1943;16:9–13.

    Google Scholar 

  6. Kamiya J. Conditioned discrimination of the EEG alpha rhythm in humans. San Francisco, CA: Western Psychological Association; 1962.

    Google Scholar 

  7. Sterman MB, Wyrwicka W, Howe R. Behavioral and neurophysiological studies of the sensorimotor rhythm in the cat. Electroencephalogr Clin Neurophysiol. 1969;27(7):678–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fetz EE. Operant conditioning of cortical unit activity. Science. 1969;163(3870):955–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2(1):157–80.

    Article  CAS  PubMed  Google Scholar 

  10. Soekadar SR, et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci Robot. 2016;1(1):eaag3296.

    Article  PubMed  Google Scholar 

  11. Soekadar S, et al. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol Dis. 2015;83:172–9.

    Article  PubMed  Google Scholar 

  12. Zander TO, Kothe C. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng. 2011;8(2):025005.

    Article  PubMed  Google Scholar 

  13. Blankertz B, et al. The berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci. 2010;4:198.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suh A, Prophet J. The state of immersive technology research: a literature analysis. Comput Hum Behav. 2018;86:77–90.

    Article  Google Scholar 

  15. Lee LH, et al. All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda. 2021.

    Google Scholar 

  16. Wolpaw JR. Brain-computer interfaces as new brain output pathways. J Physiol. 2007;579(3):613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soekadar SR, Haagen K, Birbaumer N. Brain-computer interfaces (BCI): restoration of movement and thought from neuroelectric and metabolic brain activity. Coordination: neural, behavioral and social dynamics, 2008: 229.

    Google Scholar 

  18. Jackson A, Zimmermann JB. Neural interfaces for the brain and spinal cord—restoring motor function. Nat Rev Neurol. 2012;8(12):690.

    Article  CAS  PubMed  Google Scholar 

  19. Esmaeilpour Z, et al. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimul. 2021;14(1):55–65.

    Article  PubMed  Google Scholar 

  20. Barsalou LW. Perceptual symbol systems. Behav Brain Sci. 1999;22(4):577–609; discussion 610–60

    Article  CAS  PubMed  Google Scholar 

  21. Reilly J, et al. Linking somatic and symbolic representation in semantic memory: the dynamic multilevel reactivation framework. Psychon Bull Rev. 2016;23(4):1002–14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wolpaw JR. Chapter 6—Brain–computer interfaces. In: Barnes MP, Good DC, editors. Handbook of clinical neurology. Amsterdam: Elsevier; 2013. p. 67–74.

    Google Scholar 

  23. Steinert S, et al. Doing things with thoughts: brain-computer interfaces and disembodied agency. Philosophy Technol. 2019;32(3):457–82.

    Article  Google Scholar 

  24. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.

    Article  CAS  PubMed  Google Scholar 

  25. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.

    Article  PubMed  Google Scholar 

  26. Muller-Putz GR, et al. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng. 2005;2(4):123–30.

    Article  PubMed  Google Scholar 

  27. Chen X, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci U S A. 2015;112(44):E6058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miklody D, Blankertz B. Cognitive workload of tugboat captains in realistic scenarios: adaptive spatial filtering for transfer between conditions. Front Hum Neurosci. 2022;16:818770.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venthur B, et al. Novel applications of BCI technology: Psychophysiological optimization of working conditions in industry. In 2010 IEEE International Conference on Systems, Man and Cybernetics. 2010.

    Google Scholar 

  30. Borghini G, et al. A multimodal and signals fusion approach for assessing the impact of stressful events on air traffic controllers. Sci Rep. 2020;10(1):8600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krol LR, Andreessen LM, Zander TO. Passive brain–computer interfaces: a perspective on increased interactivity. In: Brain–computer interfaces handbook: technological and theoretical advances. Boca Raton, FL: CRC Press; 2018. p. 69–86.

    Google Scholar 

  32. Leuthardt EC, et al. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1(2):63–71.

    Article  PubMed  Google Scholar 

  33. Stavisky SD, et al. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes. J Neural Eng. 2015;12(3):036009.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Birbaumer N, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Murguialday A, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soekadar SR, et al. ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Trans Neural Syst Rehabil Eng. 2011;19(5):542–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sitaram R, et al. fMRI brain-computer interfaces. IEEE Signal Process Mag. 2007;25(1):95–106.

    Article  Google Scholar 

  38. Liew SL, et al. Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabil Neural Repair. 2016;30(7):671–5.

    Article  PubMed  Google Scholar 

  39. Naseer N, Hong KS. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface. Neurosci Lett. 2013;553:84–9.

    Article  CAS  PubMed  Google Scholar 

  40. Soekadar SR, et al. Optical brain imaging and its application to neurofeedback. Neuroimage Clin. 2021;30:102577.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wolpaw JR, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–91.

    Article  PubMed  Google Scholar 

  42. Chen X, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci. 2015;112(44):E6058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kübler A, et al. The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res. 1999;124(2):223–32.

    Article  PubMed  Google Scholar 

  44. Kornhuber HH, Deecke L. Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. Pflügers Arch. 1964;281(1):52.

    Google Scholar 

  45. Walter WG, et al. Contingent negative variation : an electric sign of sensori-motor association and expectancy in the human brain. Nature. 1964;203(4943):380–4.

    Article  CAS  PubMed  Google Scholar 

  46. Pereira J, et al. EEG neural correlates of goal-directed movement intention. NeuroImage. 2017;149:129–40.

    Article  PubMed  Google Scholar 

  47. Savić AM, et al. Online control of an assistive active glove by slow cortical signals in patients with amyotrophic lateral sclerosis. J Neural Eng. 2021;18(4):046085.

    Article  Google Scholar 

  48. Schultze-Kraft M, et al. The point of no return in vetoing self-initiated movements. Proc Natl Acad Sci U S A. 2016;113(4):1080–5.

    Article  CAS  PubMed  Google Scholar 

  49. Haufe S, et al. Electrophysiology-based detection of emergency braking intention in real-world driving. J Neural Eng. 2014;11(5):056011.

    Article  PubMed  Google Scholar 

  50. de Almeida Ribeiro PR, et al. Controlling assistive machines in paralysis using brain waves and other biosignals. Adv Hum Comput Interact. 2013;2013:1–9.

    Article  Google Scholar 

  51. Simon N, et al. An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user. Front Hum Neurosci. 2014;8:1039.

    PubMed  Google Scholar 

  52. Treder MS, Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct. 2010;6(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hong K-S, Khan MJ. Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: a review. Front Neurorobot. 2017;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Muller-Putz G, et al. Towards noninvasive hybrid brain-computer interfaces: framework, practice, clinical application, and beyond. Proc IEEE. 2015;103(6):926–43.

    Article  Google Scholar 

  55. Schmidt NM, Blankertz B, Treder MS. Online detection of error-related potentials boosts the performance of mental typewriters. BMC Neurosci. 2012;13(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Soekadar SR, et al. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed Tech (Berl). 2015;60(3):199–205.

    Article  PubMed  Google Scholar 

  57. Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons. Nature. 2008;456(7222):639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hinterberger T, et al. Neuronal mechanisms underlying control of a brain-computer interface. Eur J Neurosci. 2005;21(11):3169–81.

    Article  PubMed  Google Scholar 

  59. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18(1):7–21.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schirrmeister RT, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017;38(11):5391–420.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Yan C, Gong X. Deep convolutional neural network for decoding motor imagery based brain computer interface. in 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). 2017.

    Google Scholar 

  62. Lubar JF, Shouse MN. EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback Self Regul. 1976;1(3):293–306.

    Article  CAS  PubMed  Google Scholar 

  63. Strehl U, et al. Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Front Hum Neurosci. 2017;11:135.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Enriquez-Geppert S, et al. Neurofeedback as a treatment intervention in ADHD: current evidence and practice. Curr Psychiatry Rep. 2019;21(6):46.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ros T, et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. 2020;143(6):1674–85.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cervera MA, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018;5(5):651–63.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Donati AR, et al. Long-term training with a brain-machine INTERFACE-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016;6:30383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Soekadar SR, Birbaumer N, Cohen LG. Brain-computer-interfaces in the rehabilitation of stroke and neurotrauma. 2011.

    Book  Google Scholar 

  69. Hochberg LR, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ajiboye AB, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Flesher SN, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Crea S, et al. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci Rep. 2018;8(1):10823.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dornhege G, et al. Error-related EEG potentials in brain-computer interfaces. In: Toward brain-computer interfacing. Cambridge, MA: MIT Press; 2007. p. 291–301.

    Chapter  Google Scholar 

  74. Birbaumer N, et al. Direct brain control and communication in paralysis. Brain Topogr. 2014;27(1):4–11.

    Article  PubMed  Google Scholar 

  75. Miller KJ, Hermes D, N.P. Staff. The current state of electrocorticography-based brain-computer interfaces. Neurosurg Focus. 2020;49(1):E2.

    Article  PubMed  Google Scholar 

  76. Soekadar SR, et al. Fragmentation of slow wave sleep after onset of complete locked-in state. J Clin Sleep Med. 2013;9(9):951–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Birbaumer N, et al. Ideomotor silence: the case of complete paralysis and brain-computer interfaces (BCI). Psychol Res. 2012;76(2):183–91.

    Article  PubMed  Google Scholar 

  78. Kubler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol. 2008;119(11):2658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chaudary U, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat Commun. 2022;13(1):1236.

    Article  Google Scholar 

  80. Kryger M, et al. Flight simulation using a brain-computer interface: a pilot, pilot study. Exp Neurol. 2017;287(Pt 4):473–8.

    Article  PubMed  Google Scholar 

  81. LaFleur K, et al. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J Neural Eng. 2013;10(4):046003.

    Article  PubMed  Google Scholar 

  82. Congedo M, et al. “Brain invaders”: a prototype of an open-source P300- based video game working with the OpenViBE platform. In BCI 2011—5th International Brain-Computer Interface Conference. Graz, Austria. 2011.

    Google Scholar 

  83. Cattan G. The use of brain–computer interfaces in games is not ready for the general public. Front Computer Sci. 2021:20.

    Google Scholar 

  84. Wang M, et al. A wearable SSVEP-based BCI system for quadcopter control using head-mounted device. Ieee Access. 2018;6:26789–98.

    Article  Google Scholar 

  85. Stawicki P, Gembler F, Volosyak I. Driving a semiautonomous Mobile robotic car controlled by an SSVEP-based BCI. Comput Intell Neurosci. 2016;2016

    Google Scholar 

  86. Arico P, et al. Passive BCI beyond the lab: current trends and future directions. Physiol Meas. 2018;39(8):08TR02.

    Article  CAS  PubMed  Google Scholar 

  87. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506.

    Article  PubMed  Google Scholar 

  88. Buzsáki G. The brain–cognitive behavior problem: a retrospective. eneuro. 2020;7(4):ENEURO.0069-20.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Soekadar SR, et al. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032.

    Article  PubMed  Google Scholar 

  90. Haslacher D, et al. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage. 2021;228:117571.

    Article  PubMed  Google Scholar 

  91. Garcia-Cossio E, et al. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. NeuroImage. 2016;140:33–40.

    Article  PubMed  Google Scholar 

  92. Romeni S, Zoccolan D, Micera S. A machine learning framework to optimize optic nerve electrical stimulation for vision restoration. Patterns. 2021;2(7):100286. (this issue)

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zrenner C, et al. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul. 2018;11(2):374–89.

    Article  PubMed  Google Scholar 

  94. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74(2):263–85.

    Article  PubMed  Google Scholar 

  95. Xin Z, et al. Magnetically induced temporal interference for focal and deep-brain stimulation. Front Hum Neurosci. 2021;15:693207.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Darmani G, et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol. 2022;135:51–73.

    Article  CAS  PubMed  Google Scholar 

  97. Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res. 2019;21(10):e16194.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Leuthardt EC, Moran DW, Mullen TR. Defining surgical terminology and risk for brain computer interface technologies. Front Neurosci. 2021;15:599549.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Watanabe H, et al. Intravascular neural interface with nanowire electrode. Electron Commun Jpn. 2009;92(7):29–37.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Baranauskas G. What limits the performance of current invasive brain machine interfaces? Front Syst Neurosci. 2014;8:68.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang X, et al. Tiny noise, big mistakes: adversarial perturbations induce errors in brain–computer interface spellers. Natl Sci Rev. 2020;8(4):nwaa233.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Boto E, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature. 2018;555(7698):657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Webb JL, et al. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer. Appl Phys Lett. 2019;114(23):231103.

    Article  Google Scholar 

  104. Blankertz B, et al. The Berlin Brain-Computer Interface: Progress beyond communication and control. Front Neurosci. 2016;10:530.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cao Z. A review of artificial intelligence for EEG-based brain−computer interfaces and applications. Brain Sci Adv. 2020;6(3):162–70.

    Article  Google Scholar 

  106. Müller K-R, et al. Machine learning and applications for brain-computer interfacing. Berlin, Heidelberg: Springer; 2007.

    Book  Google Scholar 

  107. Dai G, et al. HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification. J Neural Eng. 2020;17(1):016025.

    Article  PubMed  Google Scholar 

  108. Samek W, et al. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Explainable AI: interpreting, explaining and visualizing deep learning. 2019.

    Google Scholar 

  109. Goebel R, et al. Explainable AI: the new 42? In machine learning and knowledge extraction. Cham: Springer; 2018.

    Google Scholar 

  110. Nasr K, Haslacher D, Soekadar S. Advancing sensory neuroprosthetics using artificial brain networks. Patterns. 2021;2(7):100304.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gilbert CD, Li W. Top-down influences on visual processing. Nat Rev Neurosci. 2013;14(5):350–63.

    Article  CAS  PubMed  Google Scholar 

  112. Downey JE, et al. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J Neuroeng Rehabil. 2016;13(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nann M, et al. Restoring activities of daily living using an EEG/EOG-controlled semi-autonomous and mobile whole-arm exoskeleton in chronic stroke. IEEE Syst J. 2020;15(2):2314–21.

    Article  Google Scholar 

  114. Clausen J, et al. Help, hope, and hype: ethical dimensions of neuroprosthetics. Science. 2017;356(6345):1338–9.

    Article  CAS  PubMed  Google Scholar 

  115. Nann M, et al. Feasibility and safety of bilateral hybrid EEG/EOG brain/neural-machine interaction. Front Hum Neurosci. 2020;14:580105.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zander TO, et al. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proc Natl Acad Sci U S A. 2016;113(52):14898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Soekadar SR, et al. On the verge of the hybrid mind. Morals Machines. 2021;1(1):30–43.

    Article  Google Scholar 

  118. Bublitz C, Chandler J, Ienca M. Human–machine symbiosis and the hybrid mind: implications for ethics, law and human rights. In: Ienca M, et al., editors. Cambridge handbook of information technology, life sciences and human rights. Cambridge: Cambridge University Press; 2022.

    Google Scholar 

  119. Gilbert F, et al. I miss being me: phenomenological effects of deep Brain stimulation. AJOB Neurosci. 2017;8(2):96–109.

    Article  Google Scholar 

  120. Mosley PE, et al. Woe betides anybody who tries to turn me down.’ A qualitative analysis of neuropsychiatric symptoms following subthalamic deep brain stimulation for Parkinson’s disease. Neuroethics. 2021;14(1):47–63.

    Article  Google Scholar 

  121. Gilbert F, Viaña JNM, Ineichen C. Deflating the “DBS causes personality changes” bubble. Neuroethics. 2021;14(1):1–17.

    Article  Google Scholar 

  122. Strickland E, Harris M. Their bionic eyes are now obsolete and unsupported. IEEE Spectrum. 2022 [cited 2022 March 14th 2022]; https://spectrum.ieee.org/bionic-eye-obsolete

  123. Chandler JA, et al. Brain Computer interfaces and communication disabilities: ethical, legal, and social aspects of decoding speech from the Brain. Front Hum Neurosci. 2022;16:841035.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter and the presented studies were supported by the ERA-NET NEURON project HYBRIDMIND (BMBF, 01GP2121A and -B), the European Research Council (ERC) under the project NGBMI (759370) and TIMS (101081905), the Federal Ministry of Research and Education (BMBF) under the projects SSMART (01DR21025A), NEO (13GW0483C), QHMI (03ZU1110DD) and QSHIFT (01UX2211), and the Einstein Foundation Berlin (A-2019-558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjo R. Soekadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soekadar, S.R. et al. (2023). Future Developments in Brain/Neural–Computer Interface Technology. In: Dubljević, V., Coin, A. (eds) Policy, Identity, and Neurotechnology. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-031-26801-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26801-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26800-7

  • Online ISBN: 978-3-031-26801-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics