Skip to main content

Ethical Considerations of Endovascular Brain–Computer Interfaces

  • Chapter
  • First Online:
Policy, Identity, and Neurotechnology

Part of the book series: Advances in Neuroethics ((AIN))

Abstract

The use of stent-based endovascular electrode arrays is a recent approach to brain–computer interfaces (BCIs). These arrays can record neuronal activity from within the large blood vessels of the brain following placement via catheterization. Accessing the brain without the need for open craniotomy is appealing and may inspire future generations of endovascular BCI devices. Here we review some of the bioethical considerations arising from the adoption of endovascular electrode arrays for BCIs. We consider the safety and efficacy of endovascular arrays in comparison to the risks/benefits of other approaches to BCI. We explore the bioethical implications of their permanency as these implants are designed to remain in place indefinitely following endothelialization. Additionally, we consider how endovascular approaches to BCI might affect the informed consent process and discuss how the publicity surrounding BCIs may influence the expectations of a new generation of endovascular BCIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oxley TJ, Yoo PE, Rind GS, et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J NeuroInterventional Surg. 2021;13:102–8.

    Article  Google Scholar 

  2. Penn R. Intravascular intracranial EEG recording Technical note. J Neurosurg. 1973;38:239–43.

    Article  CAS  PubMed  Google Scholar 

  3. Sefcik RK, Opie NL, John SE, Kellner CP, Mocco J, Oxley TJ. The evolution of endovascular electroencephalography: historical perspective and future applications. Neurosurg Focus. 2016;40:E7.

    Article  PubMed  Google Scholar 

  4. Rapeaux AB, Constandinou TG. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Curr Opin Biotechnol. 2021;72:102–11.

    Article  CAS  PubMed  Google Scholar 

  5. Raza SA, Opie NL, Morokoff A, Sharma RP, Mitchell PJ, Oxley TJ. Endovascular neuromodulation: safety profile and future directions. Front Neurol. 2020;11:351.

    Article  PubMed  PubMed Central  Google Scholar 

  6. John SE, Grayden DB, Yanagisawa T. The future potential of the Stentrode. Expert Rev Med Devices. 2019;16:841–3.

    Article  CAS  PubMed  Google Scholar 

  7. Rajah G, Saber H, Singh R, Rangel-Castilla L. Endovascular delivery of leads and Stentrodes and their applications to deep brain stimulation and neuromodulation: a review. Neurosurg Focus. 2018;45:E19.

    Article  PubMed  Google Scholar 

  8. Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia. 2013;54:828–39.

    Article  PubMed  Google Scholar 

  9. Zentner J. Complications. In: Surgical treatment of Epilepsies. Cham: Springer; 2020. p. 331–70.

    Book  Google Scholar 

  10. Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating risk for future intracranial, fully implanted, modular neuroprosthetic systems: a systematic review of hardware complications in clinical deep brain stimulation and experimental human intracortical arrays. Neuromodulation. 2020;23:411–26.

    Article  PubMed  Google Scholar 

  11. Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95:e1244–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nicholson P, Brinjikji W, Radovanovic I, Hilditch CA, Tsang ACO, Krings T, Mendes Pereira V, Lenck S. Venous sinus stenting for idiopathic intracranial hypertension: a systematic review and meta-analysis. J NeuroInterventional Surg. 2019;11:380–5.

    Article  Google Scholar 

  13. Puffer RC, Mustafa W, Lanzino G. Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature: table 1. J NeuroInterventional Surg. 2013;5:483–6.

    Article  Google Scholar 

  14. Starke RM, Wang T, Ding D, Durst CR, Crowley RW, Chalouhi N, Hasan DM, Dumont AS, Jabbour P, Liu KC. Endovascular treatment of venous sinus stenosis in idiopathic intracranial hypertension: complications, neurological outcomes, and radiographic results. Sci World J. 2015;2015:1–8.

    Google Scholar 

  15. Kumpe DA, Bennett JL, Seinfeld J, Pelak VS, Chawla A, Tierney M. Dural sinus stent placement for idiopathic intracranial hypertension: clinical article. J Neurosurg. 2012;116:538–48.

    Article  PubMed  Google Scholar 

  16. Fan JZ, Lopez-Rivera V, Sheth SA. Over the horizon: the present and future of endovascular neural recording and stimulation. Front Neurosci. 2020;14:432.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saber H, Lewis W, Sadeghi M, Rajah G, Narayanan S. Stent survival and stent-adjacent stenosis rates following venous sinus stenting for idiopathic intracranial hypertension: a systematic review and meta-analysis. Interv Neurol. 2018;7:490–500.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ding D, Liu KC. Management strategies for intraprocedural coil migration during endovascular treatment of intracranial aneurysms: table 1. J NeuroInterventional Surg. 2014;6:428–31.

    Article  Google Scholar 

  19. Turek G, Kochanowicz J, Lewszuk A, Lyson T, Zielinska-Turek J, Chwiesko J, Mariak Z. Early surgical removal of migrated coil/stent after failed embolization of intracranial aneurysm. J Neurosurg. 2015;123:841–7.

    Article  CAS  PubMed  Google Scholar 

  20. Teleb MS, Cziep ME, Issa M, Lazzaro M, Asif K, Hun Hong S, Lynch JR, Fitzsimmons B-FM, Remler BF, Zaidat OO. Stenting and angioplasty for idiopathic intracranial hypertension: a case series with clinical, angiographic, ophthalmological, complication, and pressure reporting: an IIH case series with clinical, angiographic, and pressure reporting. J Neuroimaging. 2015;25:72–80.

    Article  PubMed  Google Scholar 

  21. Boviatsis EJ, Stavrinou LC, Themistocleous M, Kouyialis AT, Sakas DE. Surgical and hardware complications of deep brain stimulation. A seven-year experience and review of the literature. Acta Neurochir. 2010;152:2053–62.

    Article  PubMed  Google Scholar 

  22. Mokin M, Fargen KM, Primiani CT, et al. Vessel perforation during stent retriever thrombectomy for acute ischemic stroke: technical details and clinical outcomes. J NeuroInterventional Surg. 2017;9:922–8.

    Article  Google Scholar 

  23. Leuthardt EC, Moran DW, Mullen TR. Defining surgical terminology and risk for brain computer Interface technologies. Front Neurosci. 2021;15:599549.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alawieh A, Fernando Gonzalez L, Feng W. Barriers and opportunities of cortical stimulation via cerebral venous approach. Brain Stimulat. 2020;13:401–2.

    Article  Google Scholar 

  25. Oxley TJ, Opie NL, Rind GS, et al. An ovine model of cerebral catheter venography for implantation of an endovascular neural interface. J Neurosurg. 2018;128:1020–7.

    Article  PubMed  Google Scholar 

  26. Campbell BCV, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    Article  CAS  PubMed  Google Scholar 

  27. Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306.

    Article  CAS  PubMed  Google Scholar 

  28. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–95.

    Article  CAS  PubMed  Google Scholar 

  29. Peters B, Bieker G, Heckman SM, Huggins JE, Wolf C, Zeitlin D, Fried-Oken M. Brain-computer Interface users speak up: the virtual users’ forum at the 2013 international brain-computer Interface meeting. Arch Phys Med Rehabil. 2015;96:S33–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rashid M, Sulaiman N, Majeed APPA, Musa RM, Ab. Nasir AF, Bari BS, Khatun S. Current status, challenges, and possible solutions of EEG-based brain-computer Interface: a comprehensive review. Front Neurorobot. 2020;14:25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Holz EM, Botrel L, Kaufmann T, Kübler A. Long-term independent brain-computer Interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil. 2015;96:S16–26.

    Article  PubMed  Google Scholar 

  32. Carmichael C, Carmichael P. BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project. Disabil Rehabil Assist Technol. 2014;9:41–7.

    Article  PubMed  Google Scholar 

  33. Nakase H, Ohnishi H, Touho H, Karasawa J, Yamamoto S, Shimizu K. An intra-arterial electrode for intracranial electro-encephalogram recordings. Acta Neurochir. 1995;136:103–5.

    Article  CAS  PubMed  Google Scholar 

  34. Stoeter P, Dieterle L, Meyer A, Prey N. Intracranial electroencephalographic and evoked-potential recording from intravascular guide wires. AJNR Am J Neuroradiol. 1995;16(6):1214–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. He BD, Ebrahimi M, Palafox L, Srinivasan L. Signal quality of endovascular electroencephalography. J Neural Eng. 2016;13:016016.

    Article  PubMed  Google Scholar 

  36. Bower MR, Stead M, Van Gompel JJ, Bower RS, Sulc V, Asirvatham SJ, Worrell GA. Intravenous recording of intracranial, broadband EEG. J Neurosci Methods. 2013;214:21–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oxley TJ, Opie NL, John SE, et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol. 2016;34:320–7.

    Article  CAS  PubMed  Google Scholar 

  38. John SE, Opie NL, Wong YT, et al. Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Sci Rep. 2018;8:8427.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Forsyth IA, Dunston M, Lombardi G, et al. Evaluation of a minimally invasive endovascular neural interface for decoding motor activity. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, San Francisco, CA, pp. 2019. 750–753.

    Google Scholar 

  40. Moran D. Evolution of brain–computer interface: action potentials, local field potentials and electrocorticograms. Curr Opin Neurobiol. 2010;20:741–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lukatch HS, Kiddoo CE, MacIver MB. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex. 2005;15:1322–31.

    Article  PubMed  Google Scholar 

  42. Opie NL, John SE, Rind GS, Ronayne SM, Grayden DB, Burkitt AN, May CN, O’Brien TJ, Oxley TJ. Chronic impedance spectroscopy of an endovascular stent-electrode array. J Neural Eng. 2016;13:046020.

    Article  PubMed  Google Scholar 

  43. Opie NL, John SE, Rind GS, et al. Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng. 2018;2:907–14.

    Article  CAS  PubMed  Google Scholar 

  44. Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148:1–18.

    Article  PubMed  Google Scholar 

  45. Pels EGM, Aarnoutse EJ, Leinders S, Freudenburg ZV, Branco MP, van der Vijgh BH, Snijders TJ, Denison T, Vansteensel MJ, Ramsey NF. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 2019;130:1798–803.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Colachis SC, Dunlap CF, Annetta NV, Tamrakar SM, Bockbrader MA, Friedenberg DA. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. J Neural Eng. 2021;18:0460d7.

    Article  Google Scholar 

  47. Gerboni G, John SE, Ronayne SM, Rind GS, May CN, Oxley TJ, Grayden DB, Opie NL, Wong YT. Cortical brain stimulation with endovascular electrodes. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Honolulu, HI, 2018. pp. 3088–3091.

    Google Scholar 

  48. Opie NL, van der Nagel NR, John SE, Vessey K, Rind GS, Ronayne SM, Fletcher EL, May CN, O’Brien TJ, Oxley TJ. Micro-CT and histological evaluation of an neural Interface implanted within a blood vessel. IEEE Trans Biomed Eng. 2017;64:928–34.

    Article  PubMed  Google Scholar 

  49. Felton EA, Wilson JA, Williams JC, Garell PC. Electrocorticographically controlled brain–computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants: report of four cases. J Neurosurg. 2007;106:495–500.

    Article  PubMed  Google Scholar 

  50. Vansteensel MJ, Hermes D, Aarnoutse EJ, Bleichner MG, Schalk G, van Rijen PC, Leijten FSS, Ramsey NF. Brain-computer interfacing based on cognitive control. Ann Neurol. 2010;67:809–16.

    PubMed  Google Scholar 

  51. Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Passaro EA, Rohde MM, Ross DA. Identification of electrocorticogram patterns as the basis for a direct brain Interface. J Clin Neurophysiol. 1999;16:439.

    Article  CAS  PubMed  Google Scholar 

  52. Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375:2060–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Glannon W. Ethical issues in neuroprosthetics. J Neural Eng. 2016;13:021002.

    Article  PubMed  Google Scholar 

  54. Desmoulin-Canselier S. Patient’s lived experience with DBS between medical research and care: some legal implications. Med Health Care Philos. 2019;22:375–86.

    Article  PubMed  Google Scholar 

  55. Kögel J, Jox RJ, Friedrich O. What is it like to use a BCI?—Insights from an interview study with brain-computer interface users. BMC Med Ethics. 2020;21:2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Klein E, Peters B, Higger M. Ethical considerations in ending exploratory brain–computer interface research studies in locked-in syndrome. Camb Q Healthc Ethics. 2018;27:660–74.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hendriks S, Grady C, Ramos KM, et al. Ethical challenges of risk, informed consent, and posttrial responsibilities in human research with neural devices: a review. JAMA Neurol. 2019;76:1506.

    Article  Google Scholar 

  58. Sadeghi K, Lee J, Banerjee A, Sohankar J, Gupta SKS. Permanency analysis on human electroencephalogram signals for pervasive brain-computer Interface systems. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Seogwipo. 2017. pp. 767–770.

    Google Scholar 

  59. Fins JJ, Schiff ND. In the blink of the mind’s eye. Hast Cent Rep. 2010;40:21–3.

    Article  Google Scholar 

  60. Friedrich O, Racine E, Steinert S, Pömsl J, Jox RJ. An analysis of the impact of brain-computer interfaces on autonomy. Neuroethics. 2021;14:17–29.

    Article  Google Scholar 

  61. Sim J. Distinctive aspects of consent in pilot and feasibility studies. J Eval Clin Pract. 2021;27:657–64.

    Article  PubMed  Google Scholar 

  62. Fisher CE, Dunn LB, Christopher PP, Holtzheimer PE, Leykin Y, Mayberg HS, Lisanby SH, Appelbaum PS. The ethics of research on deep brain stimulation for depression: decisional capacity and therapeutic misconception: ethics of DBS for depression research. Ann N Y Acad Sci. 2012;1265:69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Klein E. Informed consent in implantable BCI research: identifying risks and exploring meaning. Sci Eng Ethics. 2016;22:1299–317.

    Article  PubMed  Google Scholar 

  64. Grübler G, Al-Khodairy A, Leeb R, Pisotta I, Riccio A, Rohm M, Hildt E. Psychosocial and ethical aspects in non-invasive EEG-based BCI research—a survey among BCI users and BCI professionals. Neuroethics. 2014;7:29–41.

    Article  Google Scholar 

  65. Specker Sullivan L, Illes J. Ethics in published brain–computer interface research. J Neural Eng. 2018;15:013001.

    Article  CAS  PubMed  Google Scholar 

  66. Kögel J, Schmid JR, Jox RJ, Friedrich O. Using brain-computer interfaces: a scoping review of studies employing social research methods. BMC Med Ethics. 2019;20:18.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Holz EM, Höhne J, Staiger-Sälzer P, Tangermann M, Kübler A. Brain–computer interface controlled gaming: evaluation of usability by severely motor restricted end-users. Artif Intell Med. 2013;59:111–20.

    Article  PubMed  Google Scholar 

  68. Blain-Moraes S, Schaff R, Gruis KL, Huggins JE, Wren PA. Barriers to and mediators of brain–computer interface user acceptance: focus group findings. Ergonomics. 2012;55:516–25.

    Article  PubMed  Google Scholar 

  69. Zickler C, Halder S, Kleih SC, Herbert C, Kübler A. Brain painting: usability testing according to the user-centered design in end users with severe motor paralysis. Artif Intell Med. 2013;59:99–110.

    Article  PubMed  Google Scholar 

  70. Richmond F, Loeb G. Dissemination: getting BCIs to the people who need them. In: Wolpaw JR, editor. Brain–computer interfaces: principles and practice; 2012.

    Google Scholar 

  71. Lim CY, Berry ABL, Hartzler AL, Hirsch T, Carrell DS, Bermet ZA, Ralston JD. Facilitating self-reflection about values and self-care among individuals with chronic conditions. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland UK, 2019. pp. 1–12.

    Google Scholar 

  72. Klein E, Ojemann J. Informed consent in implantable BCI research: identification of research risks and recommendations for development of best practices. J Neural Eng. 2016;13:043001.

    Article  PubMed  Google Scholar 

  73. Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12:318–24.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liberati G, Pizzimenti A, Simione L, Riccio A, Schettini F, Inghilleri M, Mattia D, Cincotti F. Developing brain-computer interfaces from a user-centered perspective: assessing the needs of persons with amyotrophic lateral sclerosis, caregivers, and professionals. Appl Ergon. 2015;50:139–46.

    Article  PubMed  Google Scholar 

  75. Gilbert F, Cook M, O’Brien T, Illes J. Embodiment and estrangement: results from a first-in-human “intelligent BCI” trial. Sci Eng Ethics. 2019;25:83–96.

    Article  CAS  PubMed  Google Scholar 

  76. Naik AD, Dindo LN, Liew JR, et al. Development of a clinically feasible process for identifying individual health priorities. J Am Geriatr Soc. 2018;66:1872–9.

    Article  PubMed  Google Scholar 

  77. Tinetti ME, Esterson J, Ferris R, Posner P, Blaum CS. Patient priority–directed decision making and care for older adults with multiple chronic conditions. Clin Geriatr Med. 2016;32:261–75.

    Article  PubMed  Google Scholar 

  78. Uhlig K, Leff B, Kent D, et al. A framework for crafting clinical practice guidelines that are relevant to the care and Management of People with multimorbidity. J Gen Intern Med. 2014;29:670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Freytag J, Street RL, Barnes DE, Shi Y, Volow AM, Shim JK, Alexander SC, Sudore RL. Empowering older adults to discuss advance care planning during clinical visits: the PREPARE randomized trial. J Am Geriatr Soc. 2020;68:1210–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Putrino D. Introduction—why me? In: Putrino D, editor. Hacking health make money save lives heal. World. Cham: Springer; 2018. p. 5–11.

    Google Scholar 

  81. Simon GE, Richesson RL, Hernandez AF. Disseminating trial results: we can have both faster and better. Healthcare. 2020;8:100474.

    Article  PubMed  Google Scholar 

  82. Putrino D. Identifying opportunities to innovate and create your niche. In: Evidence-based leadership, innovation, and entrepreneurship in nursing and healthcare: a practical guide for success. 1st ed. New York: Springer; 2019. p. 297–312.

    Google Scholar 

  83. Nijboer F, Clausen J, Allison BZ, Haselager P. The Asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics. 2013;6:541–78.

    Article  PubMed  Google Scholar 

  84. Rogers A. Neuralink is impressive tech, Wrapped in Musk Hype. Wired.

    Google Scholar 

  85. Bisset CN, Carter B, Law J, et al. The influence of social media on recruitment to surgical trials. BMC Med Res Methodol. 2020;20:201.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Christensen T, Riis AH, Hatch EE, Wise LA, Nielsen MG, Rothman KJ, Sørensen HT, Mikkelsen EM. Costs and efficiency of online and offline recruitment methods: a web-based cohort study. J Med Internet Res. 2017;19:e6716.

    Article  Google Scholar 

  87. Russomanno J, Patterson JG, Tree JMJ. Social media recruitment of marginalized, hard-to-reach populations: development of recruitment and monitoring guidelines. JMIR Public Health Surveill. 2019;5:e14886.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Topolovec-Vranic J, Natarajan K. The use of social Media in Recruitment for medical research studies: a scoping review. J Med Internet Res. 2016;18:e5698.

    Article  Google Scholar 

  89. Leonard A, Hutchesson M, Patterson A, Chalmers K, Collins C. Recruitment and retention of young women into nutrition research studies: practical considerations. Trials. 2014;15:23.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Murray E, Khadjesari Z, White I, Kalaitzaki E, Godfrey C, McCambridge J, Thompson S, Wallace P. Methodological challenges in online trials. J Med Internet Res. 2009;11:e1052.

    Article  Google Scholar 

  91. Pedersen ER, Kurz J. Using Facebook for health-related research study recruitment and program delivery. Curr Opin Psychol. 2016;9:38–43.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Putrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fry, A., Breyman, E., LaGrassa, E., Oxley, T., Putrino, D. (2023). Ethical Considerations of Endovascular Brain–Computer Interfaces. In: Dubljević, V., Coin, A. (eds) Policy, Identity, and Neurotechnology. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-031-26801-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26801-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26800-7

  • Online ISBN: 978-3-031-26801-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics