Skip to main content

Clinical Efficacy of Proprotein Convertase Synthase Kexin Type 9 Inhibition in Persons with Diabetes Mellitus

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 377 Accesses

Abstract

Diabetes mellitus (DM) is associated with atherogenic dyslipidemia and heightened systemic inflammatory, oxidative, and thrombotic tones. These metabolic abnormalities greatly increase the risk for atherosclerotic cardiovascular disease (ASCVD) in both coronary and peripheral arterial trees. The primary approach to attenuating increased risk for ASCVD attributable to dyslipidemia is to lower serum levels of low-density lipoprotein cholesterol (LDL-C) in a risk-stratified manner. Treatment with statins constitutes first-line therapy. For patients unable to achieve their risk-stratified LDL-C target, adjuvant therapies are used to facilitate appropriate levels of incremental LDL-C reduction. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a major regulator of LDL receptor (LDL-R) expression along the hepatocyte surface. The role of PCSK9 in LDL-R expression is to promote its destruction. PCSK9 chaperones internalized LDL-R into lysosomes for proteolytic destruction, thereby reducing their cell surface expression. This reduces hepatic LDL-C clearance capacity. PCSK9 is produced and secreted by the liver into the extracellular milieu. In the extracellular space, PCSK9 can be therapeutically neutralized by monoclonal antibodies (evolocumab and alirocumab). Alternatively, intracellular messenger ribonucleic acid (mRNA) for PCSK9 can be silenced using a silencing oligonucleotide (inclisiran) that promotes RNase-dependent hydrolysis of the mRNA, reducing PCSK9 production. Both approaches result in significant reductions in LDL-C as well as other atherogenic apo B-containing lipoproteins. The use of monoclonal antibodies (mAbs) and mRNA silencing purposed for the reduction of PCSK9 production is safe and to date is not associated with disturbances in insulin sensitivity or in serum levels of glucose or glycated hemoglobin. The PCSK9 mAbs have demonstrated a clear capacity to reduce the risk for acute cardiovascular events in prospective randomized clinical trials. A prospective randomized trial with inclisiran is fully randomized and underway.

Prepared for Lipoproteins in Diabetes (2nd edition), Jenkins A., and Toth, P.P., eds. Springer Pub, New York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107943.

    Article  Google Scholar 

  2. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes. 2014;5:444–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246–58.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–143.

    PubMed  Google Scholar 

  6. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;41:111–88.

    Article  Google Scholar 

  7. Brett T, Radford J, Qureshi N, Pang J, Watts G. Evolving worldwide approaches to lipid management and implications for Australian general practice. Aust J Gen Pract. 2021;50:297–304.

    Article  PubMed  Google Scholar 

  8. Ponte-Negretti CI, Wyss FS, Piskorz D, et al. Latin American Consensus on management of residual cardiometabolic risk. A consensus paper prepared by the Latin American Academy for the Study of Lipids and Cardiometabolic Risk (ALALIP) endorsed by the Inter-American Society of Cardiology (IASC), the International Atherosclerosis Society (IAS), and the Pan-American College of Endothelium (PACE). Arch Cardiol Mex. 2022;92:99–112.

    PubMed  Google Scholar 

  9. Cheung BMY, Lauder IJ, Lau C-P, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57:640–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

    Article  CAS  PubMed  Google Scholar 

  11. Hwang JY, Jung CH, Lee WJ, et al. Low density lipoprotein cholesterol target goal attainment rate and physician perceptions about target goal achievement in Korean patients with diabetes. Diabetes Metab J. 2011;35:628–36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mert KU, Başaran Ö, Mert GÖ, et al. Management of LDL-cholesterol levels in patients with diabetes mellitus in cardiology practice: real-life evidence of Under-treatment from the EPHESUS registry. Eur J Clin Invest. 2021;51:e13528.

    Article  CAS  PubMed  Google Scholar 

  13. Shin KH, Choi HD. Comparison of efficacy and safety of statin-ezetimibe combination therapy with statin monotherapy in patients with diabetes: a meta-analysis of randomized controlled studies. Am J Cardiovasc Drugs. 2021;22(4):395–406.

    Article  PubMed  Google Scholar 

  14. Suzuki T, Oba K, Igari Y, et al. Effects of bile-acid-binding resin (colestimide) on blood glucose and visceral fat in Japanese patients with type 2 diabetes mellitus and hypercholesterolemia: an open-label, randomized, case-control, crossover study. J Diabetes Complications. 2012;26:34–9.

    Article  CAS  PubMed  Google Scholar 

  15. Leiter LA, Banach M, Catapano AL, et al. Bempedoic acid in patients with type 2 diabetes mellitus, prediabetes, and normoglycaemia: a post hoc analysis of efficacy and glycaemic control using pooled data from phase 3 clinical trials. Diabetes Obes Metab. 2022;24(5):868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banerjee Y, Pantea Stoian A, Cicero AFG, et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf. 2022;21:9–20.

    Article  CAS  PubMed  Google Scholar 

  17. Talasaz AH, Ho AJ, Bhatty F, et al. Meta-analysis of clinical outcomes of PCSK9 modulators in patients with established ASCVD. Pharmacotherapy. 2021;41:1009–23.

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar SK, Foo ACY, Matyas A, et al. A transient amphipathic helix in the prodomain of PCSK9 facilitates binding to low-density lipoprotein particles. J Biol Chem. 2020;295:2285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He G, Gupta S, Yi M, Michaely P, Hobbs HH, Cohen JC. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem. 2002;277:44044–9.

    Article  CAS  PubMed  Google Scholar 

  21. Maurer ME, Cooper JA. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J Cell Sci. 2006;119:4235–46.

    Article  CAS  PubMed  Google Scholar 

  22. Popova NV, Deyev IE, Petrenko AG. Clathrin-mediated endocytosis and adaptor proteins. Acta Naturae. 2013;5:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK. The PCSK9 decade: thematic review series: new lipid and lipoprotein targets for the treatment of cardiometabolic diseases. J Lipid Res. 2012;53:2515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao Y-X, Liu H-H, Dong Q-T, Li S, Li J-J. Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20:1391–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci U S A. 2008;105:1820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014;25:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulz R, Schluter KD. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. 2017;12:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283:2363–72.

    Article  CAS  PubMed  Google Scholar 

  29. Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 2013;8:e64145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun. 2008;375:69–73.

    Article  CAS  PubMed  Google Scholar 

  31. Demers A, Samami S, Lauzier B, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015;35:2517–25.

    Article  CAS  PubMed  Google Scholar 

  32. Schulz R, Schlüter K-D. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. 2017;12:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajewsky K. The advent and rise of monoclonal antibodies. Nature. 2019;575:47–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gibbs JP, Slatter JG, Egbuna O et al. Evaluation of evolocumab (AMG 145), a fully human anti-PCSK9 IgG2 monoclonal antibody, in subjects with hepatic impairment. 2016.

    Google Scholar 

  35. Kasichayanula S, Grover A, Emery MG, et al. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez J-M, Brunet A, Hurbin F, DiCioccio AT, Rauch C, Fabre D. Population pharmacokinetic analysis of alirocumab in healthy volunteers or hypercholesterolemic subjects using a Michaelis–Menten approximation of a target-mediated drug disposition model—support for a biologics license application submission: part I. Clin Pharmacokinet. 2019;58:101–13.

    Article  CAS  PubMed  Google Scholar 

  37. Mansi IA, Chansard M, Lingvay I, Zhang S, Halm EA, Alvarez CA. Association of statin therapy initiation with diabetes progression: a retrospective matched-cohort study. JAMA Intern Med. 2021;181:1562–74.

    Article  CAS  PubMed  Google Scholar 

  38. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet (London, England). 2012;380:565–71.

    Article  CAS  PubMed  Google Scholar 

  39. Preiss D, Seshasai SRK, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    Article  CAS  PubMed  Google Scholar 

  40. Waters DD, Ho JE, DeMicco DA, et al. Predictors of new-onset diabetes in patients treated with atorvastatin. J Am Coll Cardiol. 2011;57:1535–45.

    Article  CAS  PubMed  Google Scholar 

  41. Colhoun HM, Ginsberg HN, Robinson JG, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J. 2016;37:2981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray KK, Colhoun HM, Szarek M, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diab Endocrinol. 2019;7:618–28.

    Article  CAS  Google Scholar 

  43. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diab Endocrinol. 2017;5:941–50.

    Article  CAS  Google Scholar 

  44. Deedwania P, Murphy SA, Scheen A, et al. Efficacy and safety of PCSK9 inhibition with evolocumab in reducing cardiovascular events in patients with metabolic syndrome receiving statin therapy: secondary analysis from the FOURIER randomized clinical trial. JAMA Cardiol. 2021;6:139–47.

    Article  PubMed  Google Scholar 

  45. Blom DJ, Koren MJ, Roth E, et al. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes Metab. 2017;19:98–107.

    Article  CAS  PubMed  Google Scholar 

  46. Rana K, Reid J, Rosenwasser JN, et al. A spotlight on alirocumab in high cardiovascular risk patients with type 2 diabetes and mixed dyslipidemia: a review on the emerging data. Diabetes Metab Syndr Obes. 2019;12:1897–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaudet D, Watts GF, Robinson JG, et al. Effect of alirocumab on lipoprotein(a) over ≥1.5 years (from the phase 3 ODYSSEY program). Am J Cardiol. 2017;119:40–6.

    Article  CAS  PubMed  Google Scholar 

  48. Raal FJ, Giugliano RP, Sabatine MS, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J Lipid Res. 2016;57:1086–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139:1483–92.

    Article  PubMed  Google Scholar 

  50. Schwartz GG, Szarek M, Bittner VA, et al. Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol. J Am Coll Cardiol. 2021;78:421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye Z, Haycock PC, Gurdasani D, et al. The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? Diabetes. 2014;63:332–42.

    Article  CAS  PubMed  Google Scholar 

  52. Kaya A, Onat A, Yüksel H, Can G, Yüksel M, Ademoğlu E. Lipoprotein(a)-activated immunity, insulin resistance and new-onset diabetes. Postgrad Med. 2017;129:611–8.

    Article  PubMed  Google Scholar 

  53. Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM. Lipoprotein(a) and risk of type 2 diabetes. Clin Chem. 2010;56:1252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwartz GG, Szarek M, Bittner VA, et al. Relation of lipoprotein(a) levels to incident type 2 diabetes and modification by alirocumab treatment. Diabetes Care. 2021;44:1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ray KK, Del Prato S, Müller-Wieland D, et al. Alirocumab therapy in individuals with type 2 diabetes mellitus and atherosclerotic cardiovascular disease: analysis of the ODYSSEY DM-DYSLIPIDEMIA and DM-INSULIN studies. Cardiovasc Diabetol. 2019;18:149.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dijk W, Cariou B. Efficacy and safety of proprotein convertase subtilisin/kexin 9 inhibitors in people with diabetes and dyslipidaemia. Diabetes Obes Metab. 2019;21:39–51.

    Article  CAS  PubMed  Google Scholar 

  57. Leiter LA, Cariou B, Muller-Wieland D, et al. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. 2017;19:1781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leiter LA, Zamorano JL, Bujas-Bobanovic M, et al. Lipid-lowering efficacy and safety of alirocumab in patients with or without diabetes: a sub-analysis of ODYSSEY COMBO II. Diabetes Obes Metab. 2017;19:989–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ginsberg HN, Farnier M, Robinson JG, et al. Efficacy and safety of alirocumab in individuals with diabetes mellitus: pooled analyses from five placebo-controlled phase 3 studies. Diab Therapy. 2018;9:1317–34.

    Article  CAS  Google Scholar 

  60. Teramoto T, Usami M, Takagi Y, Baccara-Dinet MT. Efficacy and safety of alirocumab in Japanese patients with diabetes mellitus: post-hoc subanalysis of ODYSSEY Japan. J Atheroscler Thromb. 2019;26:282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ganda OP, Plutzky J, Sanganalmath SK, et al. Efficacy and safety of alirocumab among individuals with diabetes mellitus and atherosclerotic cardiovascular disease in the ODYSSEY phase 3 trials. Diabetes Obes Metab. 2018;20:2389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ray KK, Leiter LA, Müller-Wieland D, et al. Alirocumab vs usual lipid-lowering care as add-on to statin therapy in individuals with type 2 diabetes and mixed dyslipidaemia: the ODYSSEY DM-DYSLIPIDEMIA randomized trial. Diabetes Obes Metab. 2018;20:1479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taskinen MR, Del Prato S, Bujas-Bobanovic M, et al. Efficacy and safety of alirocumab in individuals with type 2 diabetes mellitus with or without mixed dyslipidaemia: analysis of the ODYSSEY LONG TERM trial. Atherosclerosis. 2018;276:124–30.

    Article  CAS  PubMed  Google Scholar 

  64. Sattar N, Preiss D, Robinson JG, et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol. 2016;4:403–10.

    Article  CAS  PubMed  Google Scholar 

  65. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.

    Article  CAS  PubMed  Google Scholar 

  66. Leiter LA, Teoh H, Kallend D, et al. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status: the ORION-1 randomized clinical trial. Diabetes Care. 2019;42:173–6.

    Article  CAS  PubMed  Google Scholar 

  67. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toth PP. Emerging LDL therapies: mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol. 2013;7:S6–S10.

    Article  PubMed  Google Scholar 

  69. Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A, Cicero AFG. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019;79:751–66.

    Article  CAS  PubMed  Google Scholar 

  70. Chandra Ghosh G, Bandyopadhyay D, Ghosh RK, Mondal S, Herzog E. Effectiveness and safety of inclisiran, a novel long-acting RNA therapeutic inhibitor of proprotein convertase subtilisin/kexin 9. Am J Cardiol. 2018;122:1272–7.

    Article  CAS  PubMed  Google Scholar 

  71. Pratt AJ, Macrae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kosmas CE, Munoz Estrella A, Sourlas A, et al. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018;6:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev: RNA. 2016;7:637–60.

    Article  CAS  PubMed  Google Scholar 

  74. Nair JK, Willoughby JLS, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.

    Article  CAS  PubMed  Google Scholar 

  75. Bon C, Hofer T, Bousquet-Melou A, Davies MR, Krippendorff BF. Capacity limits of asialoglycoprotein receptor-mediated liver targeting. MAbs. 2017;9:1360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.

    Article  CAS  PubMed  Google Scholar 

  77. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4:1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stoekenbroek RM, Kallend D, Wijngaard PL, Kastelein JJ. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Future Cardiol. 2018;14:433–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toth, P.P., Rizzo, M., Banach, M. (2023). Clinical Efficacy of Proprotein Convertase Synthase Kexin Type 9 Inhibition in Persons with Diabetes Mellitus. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_27

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics