Skip to main content

The Role of Lipids and Lipoproteins in Peripheral Neuropathy

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Abstract

Diabetic peripheral neuropathy (DPN) is an extremely common chronic complication of diabetes, and also the one with the most complex and partially understood pathogenesis. In contrast to retinopathy or nephropathy, the risk of neuropathy does not follow closely the degree of glycemic control achieved by patients, and other factors seem to play a larger role in its appearance and progression. Lipid and lipoprotein metabolism is one among such factors. Epidemiological evidence indicates a higher incidence of DPN among patients with diabetes and dyslipidemia, while patients in the active group of clinical trials of statins and fibrates have a reduced incidence. From a biological standpoint, lipid mediators are involved in multiple pathways that lead to nerve cell damage. For these reasons, several interventions that impact lipid metabolism like statins, fibrates, alpha-lipoic acid, gamma-linolenic acid, and coenzyme Q10 (ubiquinone) have been tested as therapies for DPN, with varying results. In this chapter, we summarize the mechanisms by which lipid metabolism relates to DPN, the evidence supporting this hypothesis, and relevant ongoing clinical trials in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation. IDF Diabetes Atlas - 10th edition: key messages. IDF. https://diabetesatlas.org/. Accessed 15 Dec 2021.

  2. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41.

    Article  PubMed  Google Scholar 

  3. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–54.

    Article  CAS  PubMed  Google Scholar 

  4. Callaghan BC, Price RS, Feldman EL. Distal symmetric polyneuropathy: a review. JAMA. 2015;314:2172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  6. Escaño-Polanco FM, Odriozola A, Davidson J, Pedrosa H, Fuente G, Márquez G, Braver JD, Pérez-Monteverde A, Litwak L, Mendivil CO, Rolím LC, Schmid H. Consenso de expertos para el manejo de la neuropatía diabética. Rev ALAD. 2016;6:121–50.

    Google Scholar 

  7. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas 9th edition. Diabetes Res Clin Pract. 2019;157:107843.

    Article  PubMed  Google Scholar 

  8. Sima AA, Kamiya H. Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann N Y Acad Sci. 2006;1084:235–49.

    Article  PubMed  Google Scholar 

  9. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C, Nuber A, Pozza G, Ward JD. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996;39(11):1377–84.

    Article  CAS  PubMed  Google Scholar 

  10. Chronic symmetric symptomatic polyneuropathy in the elderly: a field screening investigation in two Italian regions. I. Prevalence and general characteristics of the sample. Italian General Practitioner Study Group (IGPSG). Neurology. 1995;45:1832–6.

    Google Scholar 

  11. Perez-Matos MC, Morales-Alvarez MC, Mendivil CO. Lipids: a suitable therapeutic target in diabetic neuropathy? J Diabetes Res. 2017;2017:6943851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vizcaíno E, Hernández JD, Franco H, Suárez A, Orduz A, Serrano C, Mateus A, Díaz O, Rodríguez M, Gómez Y, Mora LM, Villa M, Mendivil CO. Diabetic distal symmetric polyneuropathy: Prevalence and associated factors in a Colombian population. Rev ALAD 2012;2:264−273.

    Google Scholar 

  13. Franklin GM, Kahn LB, Baxter J, Marshall JA, Hamman RF. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol. 1990;131(4):633–43.

    Article  CAS  PubMed  Google Scholar 

  14. Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, Wilson DM, O’Brien PC, Melton LJ III, Service FJ. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43(11):2345.

    Google Scholar 

  15. Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care. 2003;26(6):1790–5.

    Article  PubMed  Google Scholar 

  16. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: risk factors, diagnosis and treatment. World J Diabetes. 2018;9(1):1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014;5(1):17–39.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agashe S, Petak S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovasc J. 2018;14(4):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coppini DV. Enigma of painful diabetic neuropathy: can we use the basic science, research outcomes and real-world data to help improve patient care and outcomes? Diabet Med. 2016;33:1477–82.

    Article  CAS  PubMed  Google Scholar 

  20. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Negi G, Kumar A, Joshi RP, Sharma SS. Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: old perspective with a new angle. Biochem Biophys Res Commun. 2011;408:1–5.

    Article  CAS  PubMed  Google Scholar 

  22. Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int. 2015;2015:515042.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frias B, Merighi A. Capsaicin, nociception and pain. Molecules. 2016;21:797.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020;21:3421.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greig M, Tesfaye S, Selvarajah D, Wilkinson ID. Insights into the pathogenesis and treatment of painful diabetic neuropathy. Handb Clin Neurol. 2014;126:559–78.

    Article  PubMed  Google Scholar 

  26. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498–510.

    Article  CAS  PubMed  Google Scholar 

  27. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97:12222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des. 2008;14:953–61.

    Article  CAS  PubMed  Google Scholar 

  29. Nathan D. Effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;328:1676–85.

    Article  CAS  PubMed  Google Scholar 

  30. Martin CL, Albers J, Herman WH, Cleary P, Waberski B, Greene DA, Stevens MJ, Feldman EL, DCCT/EDIC Research Group. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care. 2006;29:340–4.

    Article  PubMed  Google Scholar 

  31. Albers J, Herman W, Pop-Busui R, Feldman E, Marting C, Cleary PA, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care. 2010;33:1090–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    Article  CAS  PubMed  Google Scholar 

  33. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  35. Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  36. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  Google Scholar 

  37. Grote CW, Morris JK, Ryals JM, Geiger PC, Wright DE. Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp Diabetes Res. 2011;2011:1–12.

    Article  Google Scholar 

  38. Toth C, Brussee V, Martinez JA, McDonald D, Cunningham FA, Zochodne DW. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. Neuroscience. 2006;139:429–49.

    Article  CAS  PubMed  Google Scholar 

  39. Grote CW, Groover AL, Ryals JM, Geiger PC, Feldman EL, Wright DE. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun. 2013;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han L, Ji L, Chang J, Wen J, Zhao W, Shi H, et al. Peripheral neuropathy is associated with insulin resistance independent of metabolic syndrome. Diabetol Metab Syndr. 2015;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cai Z, Yang Y, Zhang J. A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy. Sci Rep. 2021;11:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dey D, Basu D, Roy SS, Bandyopadhyay A, Bhattacharya S. Involvement of novel PKC isoforms in FFA-induced defects in insulin signaling. Mol Cell Endocrinol. 2006;246:60–4.

    Article  CAS  PubMed  Google Scholar 

  44. Coste TC, Gerbi A, Vague P, Maixent JM, Pieroni G, Raccah D. Peripheral diabetic neuropathy and polyunsaturated fatty acid supplementations: natural sources or biotechnological needs? Cell Mol Biol. 2004;50:845–53.

    CAS  PubMed  Google Scholar 

  45. Weijers RNM. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J Diabetes Metab Disord. 2015;15:13.

    Article  PubMed  Google Scholar 

  46. Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol. 2013;216:T1–15.

    Article  CAS  PubMed  Google Scholar 

  47. Roustit M, Loader J, Deusenbery C, Baltzis D, Veves A. Endothelial dysfunction as a link between cardiovascular risk factors and peripheral neuropathy in diabetes. J Clin Endocrinol Metab. 2016;101:3401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Julu PO. Essential fatty acids prevent slowed nerve conduction in streptozotocin diabetic rats. J Diabetes Complications. 1988;2:185–8.

    Article  CAS  Google Scholar 

  49. Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993;16:8–15.

    Article  CAS  PubMed  Google Scholar 

  50. Manzella D, Barbieri M, Rizzo MR, Ragno E, Passariello N, Gambardella A, et al. Role of free fatty acids on cardiac autonomic nervous system in noninsulin-dependent diabetic patients: effects of metabolic control. J Clin Endocrinol Metab. 2001;86:2769–74.

    Article  CAS  PubMed  Google Scholar 

  51. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS, et al. Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes. 2011;60:1981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, Gross RW, Milbrandt J. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013;77:886–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rial E, Rodríguez-Sánchez L, Gallardo-Vara E, Zaragoza P, Moyano E, González-Barroso MM. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. Biochim Biophys Acta Bioenerg. 2010;1797:800–6.

    Article  CAS  Google Scholar 

  55. Hinder LM, Figueroa-Romero C, Pacut C, Hong Y, Vivekanandan-Giri A, Pennathur S, et al. Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction. Antioxid Redox Signal. 2014;21:588–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chowdhury SKR, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes. 2010;59:1082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hinder LM, Vivekanandan-Giri A, McLean LL, Pennathur S, Feldman EL. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol. 2013;216:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Freeman OJ, Unwin RD, Dowsey AW, Begley P, Ali S, Hollywood KA, et al. Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy. Diabetes. 2016;65:228–38.

    Article  CAS  PubMed  Google Scholar 

  59. Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem. 2005;280:33588–98.

    Article  CAS  PubMed  Google Scholar 

  60. Chowdhury SKR, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, et al. Impaired adenosine monophosphate-activated protein kinase signaling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain. 2012;135:1751–66.

    Article  Google Scholar 

  61. Shibata T, Takeuchi S, Yokota S, Kakimoto K, Yonemori F, Wakitani K. Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br J Pharmacol. 2000;130:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Njajou OT, Kanaya AM, Holvoet P, Connelly S, Strotmeyer ES, Harris TB, et al. Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the Health, Aging and Body Composition Study. Diabetes Metab Res Rev. 2009;25:733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58:2376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J Lipids. 2013;2013:1–12.

    Article  Google Scholar 

  65. Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, et al. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. 2015;29:4461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei N, Pan J, Pop-Busui R, Othman A, Alecu I, Hornemann T, et al. Altered sphingoid base profiles in type 1 compared to type 2 diabetes. Lipids Health Dis. 2014;13:161.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bertea M, Rütti MF, Othman A, Marti-Jaun J, Hersberger M, von Eckardstein A, et al. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9:84.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dohrn MF, Othman A, Hirshman SK, Bode H, Alecu I, Fähndrich E, et al. Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy? Eur J Neurol. 2015;22:806–e55.

    Article  CAS  PubMed  Google Scholar 

  69. Hammad SM, Baker NL, El Abiad JM, Spassieva SD, Pierce JS, Rembiesa B, Bielawski J, Lopes-Virella MF, Klein RL, DCCT/EDIC Group of Investigators. Increased plasma levels of select deoxy-ceramide and ceramide species are associated with increased odds of diabetic neuropathy in type 1 diabetes: a pilot study. Neuromolecular Med. 2017;19:46–56.

    Article  CAS  PubMed  Google Scholar 

  70. Othman A, Bianchi R, Alecu I, Wei Y, Porretta-Serapiglia C, Lombardi R, et al. Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes. 2015;64:1035–45.

    Article  CAS  PubMed  Google Scholar 

  71. Othman A, Benghozi R, Alecu I, Wei Y, Niesor E, von Eckardstein A, et al. Fenofibrate lowers atypical sphingolipids in plasma of dyslipidemic patients: a novel approach for treating diabetic neuropathy? J Clin Lipidol. 2015;9:568–75.

    Article  PubMed  Google Scholar 

  72. Vallianou N, Evangelopoulos A, Koutalas P. Alpha-lipoic acid and diabetic neuropathy. Rev Diabet Stud. 2009;6:230–6.

    Article  PubMed  Google Scholar 

  73. Tesfaye S. Recent advances in the management of diabetic distal symmetrical polyneuropathy. J Diabetes Investig. 2011;2:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics. 2009;6:638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a meta-analysis. Diabet Med. 2004;21:114–21.

    Article  CAS  PubMed  Google Scholar 

  76. Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, et al. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy. Diabetes Care. 2006;29:2365–70.

    Article  CAS  PubMed  Google Scholar 

  77. Elbadawy AM, Abd Elmoniem RO, Elsayed AM. Alpha lipoic acid and diabetes mellitus: potential effects on peripheral neuropathy and different metabolic parameters. Alexandria J Med. 2021;57:113–20.

    Article  CAS  Google Scholar 

  78. Margaritis M, Channon KM, Antoniades C. Statins as regulators of redox state in the vascular endothelium: beyond lipid lowering. Antioxid Redox Signal. 2013;20:1198–215.

    Article  Google Scholar 

  79. Parson H, Bundy M, Dublin C, Boyd A, Paulson J, Vinik A. Pleiotropic effects of rosuvastatin on microvascular function in type 2 diabetes. Diabetes Metab Syndr Obes. 2010;3:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hernández-Ojeda J, Román-Pintos L, Rodríguez-Carrizalez A, Troyo-Sanromán R, Cardona Muñoz E, Alatorre-Carranza M d P, et al. Effect of rosuvastatin on diabetic polyneuropathy: a randomized, double-blind, placebo-controlled Phase IIa study. Diabetes Metab Syndr Obes. 2014;7:401–7.

    PubMed  PubMed Central  Google Scholar 

  81. Davis TM, Yeap BB, Davis WA, Bruce DG. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2008;51:562–6.

    Article  CAS  PubMed  Google Scholar 

  82. Villegas-Rivera G, Román-Pintos LM, Cardona-Muñoz EG, Arias-Carvajal O, Rodríguez-Carrizalez AD, Troyo-Sanromán R, et al. Effects of ezetimibe/simvastatin and rosuvastatin on oxidative stress in diabetic neuropathy: a randomized, double-blind, placebo-controlled clinical trial. Oxid Med Cell Longev. 2015;2015:756294.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rajamani PG, Colman LP, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373:1780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sarfo-Kantanka O, Sarfo FS, Kyei I, Agyemang C, Mbanya JC. Incidence and determinants of diabetes-related lower limb amputations in Ghana, 2010–2015 - a retrospective cohort study. BMC Endocr Disord. 2019;19:27.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Benatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr. 2004;23(4):281–302.

    Article  CAS  PubMed  Google Scholar 

  86. Jamal GA, Carmichael H. The effect of gamma-linolenic acid on human diabetic peripheral neuropathy: a double-blind placebo-controlled trial. Diabet Med. 1990;7:319–23.

    Article  CAS  PubMed  Google Scholar 

  87. Won JC, Kwon HS, Moon SS, Chun SW, Kim CH, Park IB, Kim IJ, Lee J, Cha BY, Park TS. γ-Linolenic acid versus α-lipoic acid for treating painful diabetic neuropathy in adults: a 12-week, double-placebo, randomized, noninferiority trial. Diabetes Metab J. 2020;44:542–54.

    Article  PubMed  Google Scholar 

  88. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7S:41–50.

    Article  Google Scholar 

  89. Hernández-Ojeda J, Cardona-Muñoz EG, Román-Pintos LM, Troyo-Sanromán R, Ortiz-Lazareno PC, Cárdenas-Meza MA, et al. The effect of ubiquinone in diabetic polyneuropathy: a randomized double-blind placebo-controlled study. J Diabetes Complications. 2012;26:352–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos O. Mendivil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collazos-Alemán, J.D., Salazar-Ocampo, M.P., Mendivil, C.O. (2023). The Role of Lipids and Lipoproteins in Peripheral Neuropathy. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics