Abstract
Chile is frequently affected by different natural hazards that are constantly reshaping the landscape. Particularly, Large and Infrequent Disturbances (LIDs) such as wildfires and volcanic eruptions are capable of affecting entire river catchments by altering the hydrological cycle, reducing the land cover, and boosting sediment remobilization. Given the multitude of effects caused by such disturbances, the response of the catchments is not easily predictable, and different geomorphic responses are expected. The assessment of sediment connectivity can help to better comprehend the overall effects of wildfires and volcanic eruptions on the sediment transfer dynamics at the catchment scale. Sediment connectivity infers the potential transfer of sediment between compartments of the catchment according to the spatial configurations and the processes of such compartments. After a LID, awareness of the degree of linkage between sediment sources and downstream areas is pivotal to reduce the risk and hazard, improving catchment management. In Chile, analysis of sediment connectivity is extremely valuable even tough the availability of high-resolution topographic data and catchments’ accessibility are not always guaranteed. For this reason, much effort should be employed to adapt approaches, based on high-resolution data, to this context by exploiting freely available global data and satellite images and to find trade-offs between data requirements and reliability of the outcomes.
Keywords
- Large infrequent disturbances
- Sediment connectivity
- Multi-temporal mapping
- Transferable workflow
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alexander J, Barclay J, Sušnik J, Loughlin SC, Herd RA, Darnell A, Crosweller S (2010) Sediment-charged flash floods on Montserrat: The influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194:127–138. https://doi.org/10.1016/j.jvolgeores.2010.05.002
Arcement GJ, Schneider VR (1989) Guide for Selecting Manning’s Roughness coefficients for natural channels and flood plains. United States Geological Survey Water-Supply Paper 2339
Baggio T, Martini L, Torresani L (2022) R_IC_v1.0 (1.0). Zenodo. https://doi.org/10.5281/zenodo.6566013
Bangen SG, Wheaton JM, Bouwes N, Bouwes B, Jordan C (2014) A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology 206:343–361. https://doi.org/10.1016/j.geomorph.2013.10.010
Basso-Báez S, Mazzorana B, Ulloa H, Bahamondes D, Ruiz-Villanueva V, Sanhueza D, Iroumé A, Picco L (2020) Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. J South Am Earth Sci 102:102655. https://doi.org/10.1016/j.jsames.2020.102655
Benavides-Solorio J, MacDonald LH (2001) Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrol Process 15:2931–2952. https://doi.org/10.1002/hyp.383
Benda LE, Sias JC (2003) A quantitative framework for evaluating the mass balance of in-stream organic debris. For Ecol Manag 172:1–16. https://doi.org/10.1016/S0378-1127(01)00576-X
Bertin D, Amlgo Á, Mella M, Astudillo V, Bertin L, Bucchi F (2015) Erupción del volcán Calbuco 2015: Estratigrafía eruptiva y volumen involucrado. XIV Congreso Geològico Chileno
Björnsson H (2003) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Change Subglacial Lakes Planet Perspect 35:255–271. https://doi.org/10.1016/S0921-8181(02)00130-3
Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. CATENA 75:268–277. https://doi.org/10.1016/j.catena.2008.07.006
Bracken LJ, Crooke J (2007) The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Process 21:1749–1763. https://doi.org/10.1002/hyp
Bracken LJ, Turnbull L, Wainwright J, Bogart P (2015) Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surf Process Landf 40:177–188. https://doi.org/10.1002/esp.3635
Brardinoni F, Cavalli M, Heckmann T, Liébault F, Rimböck A (2015) Guidelines for assessing sediment dynamics in alpine basins and channel reaches
Brierley G, Fryirs K, Jain V (2006) Landscape connectivity: the geographic basis of geomorphic applications. Area 38:165–174. https://doi.org/10.1111/j.1475-4762.2006.00671.x
Brunsden D (1979) The royal geographical society (with the Institute of British geographers). Landsc Sensit Change 4:463–484. https://doi.org/10.2307/1780485
Brunsden D (1993) Barriers to geomorphological change. In: Thomas DSG, Allison RJ (eds) Landscape sensitivity. Wiley, Chichester, pp 7–12
Burt TP, Allison RJ (2010) Sediment cascades: an integrated approach. https://doi.org/10.1002/9780470682876
Cantreul V, Bielders C, Calsamiglia A, Degré A (2018) How pixel size affects a sediment connectivity index in central Belgium. Earth Surf Process Landf 43:884–893. https://doi.org/10.1002/esp.4295
Capra L, Coviello V, Borselli L, Márquez-Ramírez VH, Arámbula-Mendoza R (2018) Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring. Nat Hazards Earth Syst Sci 18:781–794. https://doi.org/10.5194/nhess-18-781-2018
Carn SA, Paluster JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa G (2009) The unexpected awakening of Chaitén Volcano, Chile. Eos 90:205–206. https://doi.org/10.1029/2009EO240001
Carrivick JL, Tweed FS (2016) A global assessment of the societal impacts of glacier outburst floods. Glob Planet Change 144:1–16. https://doi.org/10.1016/j.gloplacha.2016.07.001
Carrivick JL, Smith MW, Quincey DJ (2016) Structure from motion in the geosciences. In: New analytical methods in earth and environmental science. Chichester, Wiley
Castruccio A, Clavero J, Segura A, Samaniego P, Roche O, Le Pennec JL, Droguett B (2016) Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile). Bull Volcanol 78:62. https://doi.org/10.1007/s00445-016-1058-8
Cavalli M, Marchi L (2008) Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazards Earth Syst Sci 8:323–333. https://doi.org/10.5194/nhess-8-323-2008
Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188:31–41. https://doi.org/10.1016/j.geomorph.2012.05.007
Church M (2010) The trajectory of geomorphology. Prog Phys Geogr Earth Environ 34:265–286. https://doi.org/10.1177/0309133310363992
Comiti F, Da Canal M, Surian N, Mao L, Picco L, Lenzi MA (2011) Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200years. Geomorphology 125:147–159. https://doi.org/10.1016/j.geomorph.2010.09.011
CONAF (2019) Estadísticas—Resumen Regional Ocurrencia (Número) y Daño (Superficie Afectada) por Incendios Forestales 1977–2019. Santiago, Chile
Crema S, Cavalli M (2018) SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity. Comput Geosci 111:39–45. https://doi.org/10.1016/j.cageo.2017.10.009
Crema S, Schenato L, Goldin B, Marchi L, Cavalli M (2015) Toward the development of a stand-alone application for the assessment of sediment connectivity. Rend Online Soc Geol Ital 34:58–61. https://doi.org/10.3301/ROL.2015.37
Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F (2019) Geomorphic effectiveness of check dams in a debris-flow catchment using multi-temporal topographic surveys. CATENA 174:73–83. https://doi.org/10.1016/j.catena.2018.11.004
Cui P, Lin Y, Chen C (2012) Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecol Eng 44:61–69. https://doi.org/10.1016/j.ecoleng.2012.03.012
Davies BJ, Glasser NF (2012) Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (~AD 1870) to 2011. J Glaciol 58:1063–1084. https://doi.org/10.3189/2012JoG12J026
Dussaillant A, Benito G, Buytaert W, Carling P, Meier C, Espinoza F (2010) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Nat Hazards 54:469–481. https://doi.org/10.1007/s11069-009-9479-8
Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems 1:497–510. https://doi.org/10.1007/s100219900046
Fryirs K (2013) (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surf Process Landf 38:30–46. https://doi.org/10.1002/esp.3242
Fryirs K, Brierley G (2013) Geomorphic analysis of river systems: an approach to reading the landscape. Wiley, Chichester
Fryirs KA, Brierley GJ, Preston NJ, Spencer J (2007) Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84:297–316. https://doi.org/10.1016/j.geomorph.2006.01.044
González ME, Veblen TT, Sibold JS (2005) Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J Biogeogr 32:1187–1202. https://doi.org/10.1111/j.1365-2699.2005.01262.x
González ME, Lara A, Urrutia R, Bosnich J (2011) Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32:215–219. https://doi.org/10.4067/S0717-92002011000300002
González ME, Amoroso M, Lara A, Veblen TT, Donoso C, Kitzberger T, Mundo I, Holz A, Casteller A, Paritsis J, Muñoz A, Suárez L, Promis A (2014) Ecología de Disturbios y su Influencia en los Bosques Templados de Chile y Argentina. In Donoso C, González ME, Lara A (eds) Ecología Forestal. Bases para el Manejo Sustentable y Conservación de los Bosques Nativos de Chile (pp 411–502). Valdivia, Chile: Ediciones Universidad Austral de Chile (UACh)
Graf WL (1977) The rate law in fluvial geomorphology. Am J Sci 277:178–191. https://doi.org/10.2475/ajs.277.2.178
Harvey AM (2001) Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. CATENA 42:225–250. https://doi.org/10.1016/S0341-8162(00)00139-9
Heckmann T, Cavalli M, Cerdan O, Foerster S, Javaux M, Lode E, Smetanová A, Vericat D, Brardinoni F (2018) Indices of sediment connectivity: opportunities, challenges and limitations. Earth Sci Rev 187:77–108. https://doi.org/10.1016/j.earscirev.2018.08.004
Hooke J, Souza J, Marchamalo M (2021) Evaluation of connectivity indices applied to a Mediterranean agricultural catchment. CATENA 207:105–113
Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114:183–198. https://doi.org/10.1016/j.rse.2009.08.017
Iribarren Anacona P, Norton K, Mackintosh A, Escobar F, Allen S, Mazzorana B, Schaefer M (2018) Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile. Nat Hazards 94:93–119. https://doi.org/10.1007/s11069-018-3376-y
Iroumé A, Mao L, Andreoli A, Ulloa H, Ardiles MP (2015) Large wood mobility processes in low-order Chilean river channels. Geomorphology 228:681–693. https://doi.org/10.1016/j.geomorph.2014.10.025
Kalantari Z, Cavalli M, Cantone C, Crema S, Destouni G (2017) Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Sci Total Environ 581–582:386–398. https://doi.org/10.1016/j.scitotenv.2016.12.147
Kataoka KS, Manville V, Nakajo T, Urabe A (2009) Impacts of explosive volcanism on distal alluvial sedimentation: examples from the Pliocene-Holocene volcaniclastic successions of Japan. Sediment Geol 220:306–317. https://doi.org/10.1016/j.sedgeo.2009.04.016
Keefer DK (1984) Landslides caused by earthquakes. GSA Bull 95:406–421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. In: Morisawa M (ed) Geomorphology and Natural Hazards. Elsevier, Amsterdam, pp 265–284. https://doi.org/10.1016/B978-0-444-82012-9.50022-0
Keesstra S, Nunes JP, Saco P, Parsons T, Poeppl R, Masselink R, Cerdà A (2018) The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci Total Environ 644:1557–1572. https://doi.org/10.1016/j.scitotenv.2018.06.342
Knighton D (1998) Fluvial forms and processes: a new perspective, Rev. and update ed. Arnold, London
Korup O, McSaveney MJ, Davies TRH (2004) Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphol Hazards Mass Mov 61:189–207. https://doi.org/10.1016/j.geomorph.2004.01.001
Korup O, Seidemann J, Mohr CH (2019) Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nat Geosci 12:284–289. https://doi.org/10.1038/s41561-019-0315-9
Krieger G, Zink M, Bachmann M, Bräutigam B, Schulze D, Martone M, Rizzoli P, Steinbrecher U, Walter Antony J, De Zan F, Hajnsek I, Papathanassiou K, Kugler F, Rodriguez Cassola M, Younis M, Baumgartner S, López-Dekker P, Prats P, Moreira A (2013) TanDEM-X: a radar interferometer with two formation-flying satellites. Acta Astronaut 89:83–98. https://doi.org/10.1016/j.actaastro.2013.03.008
Lara LE, Amigo A, Orozco G, Silva C (2011a) Peligros Volcánicos de Chile. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 1 mapa escala 1:2.000.000
Lexartza-Artza I, Wainwright J (2009) Hydrological connectivity: linking concepts with practical implications. CATENA 79(2):146–152
Lillesand TM, Kiefer RW, Chipman JW (2016) Remote Sensing and Image Interpretation. Wiley, Hoboken
Lin G-W, Chen H, Hovius N, Horng M-J, Dadson S, Meunier P, Lines M (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf Process Landf 33:1354–1373. https://doi.org/10.1002/esp.1716
Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr Earth Environ 32:31–49. https://doi.org/10.1177/0309133308089496
Llena M, Vericat D, Cavalli M, Crema S, Smith MW (2019) The effects of land use and topographic changes on sediment connectivity in mountain catchments. Sci Total Environ 660:899–912. https://doi.org/10.1016/j.scitotenv.2018.12.479
López-Escobar L, Kilian R, Kempton PD, Tagiri M (1995) Petrography and geochemistry of quaternary rocks from the Southern Volcanic Zone of the Andes between 41° 30ʹ and 46° 00ʹ S, Chile. Rev Geol Chile 20:33–55. https://doi.org/10.5027/andgeoV20n1-a04
López-Vicente M, Ben-Salem N (2019) Computing structural and functional flow and sediment connectivity with a new aggregated index: a case study in a large Mediterranean catchment. Sci Total Environ 651:179–191. https://doi.org/10.1016/J.SCITOTENV.2018.09.170
López-Vicente M, Poesen J, Navas A, Gaspar L (2013) Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. CATENA 102:62–73
López-Vicente M, González-Romero J, Lucas-Borja ME (2020) Forest fire effects on sediment connectivity in headwater sub-catchments: evaluation of indices performances. Sci Total Environ 732:139–206
Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008–2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol 40:324–358. https://doi.org/10.5027/andgeoV40n2-a09
Major JJ, Bertin D, Pierson TC, Amigo Á, Iroumé A, Ulloa H, Castro J (2016) Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile. Water Resour Res 52:5075–5094. https://doi.org/10.1002/2015WR018250
Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220:136–161. https://doi.org/10.1016/j.sedgeo.2009.04.022
Marchi L, Comiti F, Crema S, Cavalli M (2019) Channel control works and sediment connectivity in the European Alps. Sci Total Environ 668:389–399. https://doi.org/10.1016/j.scitotenv.2019.02.416
Martini L, Picco L, Iroumé A, Cavalli M (2019) Sediment connectivity changes in an Andean catchment affected by volcanic eruption. Sci Total Environ 692:1209–1222. https://doi.org/10.1016/j.scitotenv.2019.07.303
Martini L, Faes L, Picco L, Iroumé A, Lingua E, Garbarino M, Cavalli M (2020) Assessing the effect of fire severity on sediment connectivity in central Chile. Sci Total Environ 728:139006. https://doi.org/10.1016/j.scitotenv.2020.139006
Martini L, Cavalli M, Picco L (2022) Predicting sediment connectivity in a mountain basin: a quantitative analysis of the index of connectivity. Earth Surf Process Landf 47:1500–1513. https://doi.org/10.1002/esp.5331
Mazzorana B, Picco L, Rainato R, Iroumé A, Ruiz-Villanueva V, Rojas C, Valdebenito G, Iribarren-Anacona P, Melnick D (2019) Cascading processes in a changing environment: Disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Sci Total Environ 655:1089–1103. https://doi.org/10.1016/j.scitotenv.2018.11.217
Messenzehl K, Hoffmann T, Dikau R (2014) Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park—linking geomorphic field mapping with geomorphometric modelling. Geomorphology 221:215–229. https://doi.org/10.1016/j.geomorph.2014.05.033
Micheletti N, Chandler JH, Lane SN (2015) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landf 40:473–486. https://doi.org/10.1002/esp.3648
Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1:6–43. https://doi.org/10.1109/MGRS.2013.2248301
Mudd SM (2020) Topographic data from satellites. Develop Earth Surf Process 23:91–128. https://doi.org/10.1016/B978-0-444-64177-9.00004-7
Najafi S, Dragovich D, Heckmann T, Sadeghi SH (2021) Sediment connectivity concepts and approaches. CATENA 196:104880–104880. https://doi.org/10.1016/j.catena.2020.104880
Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42° 30ʹ–45° S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31. https://doi.org/10.4067/S0716-02082004000200003
Neary DG (2005) Wildland fire mitigation networks in the western United States. Disasters 33:721–746. https://doi.org/10.1111/j.1467-7717.2009.01106.x
Neary DG, Ryan KC, DeBano LF (2005) Wildland fire in ecosystems: effects of fire on soils and water (No. RMRS-GTR-42-V4). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ft. Collins, CO. https://doi.org/10.2737/RMRS-GTR-42-V4
Nicoll T, Brierley G (2017) Within-catchment variability in landscape connectivity measures in the Garang catchment, upper Yellow River. Geomorphology 277:197–209. https://doi.org/10.1016/j.geomorph.2016.03.014
Oguchi T, Wasklewicz T, Hayakawa YS (2013) 9.35 remote data in fluvial geomorphology: characteristics and applications. In: Treatise on geomorphology. Elsevier, pp 711–729. https://doi.org/10.1016/B978-0-12-374739-6.00262-1
Ortíz-Rodríguez AJ, Borselli L, Sarocchi D (2017) Flow connectivity in active volcanic areas: use of index of connectivity in the assessment of lateral flow contribution to main streams. CATENA 157:90–111. https://doi.org/10.1016/j.catena.2017.05.009
Ortíz-Rodríguez AJ, Capra L, Muñoz-Robles C, Coviello V, Borselli L (2020) Connectivity and hydrological efficiency dynamics at active volcanoes, Mexico. Sci Total Environ 736:139649–139649. https://doi.org/10.1016/j.scitotenv.2020.139649
Passalacqua P, Belmont P, Staley DM, Simley JD, Arrowsmith JR, Bode CA, Crosby C, DeLong SB, Glenn NF, Kelly SA, Lague D, Sangireddy H, Schaffrath K, Tarboton DG, Wasklewicz T, Wheaton JM (2015) Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth Sci Rev 148:174–193. https://doi.org/10.1016/j.earscirev.2015.05.012
Pellegrini G, Martini L, Cavalli M, Rainato R, Cazorzi A, Picco L (2021) The morphological response of the Tegnas alpine catchment (Northeast Italy) to a Large Infrequent Disturbance. Sci Total Environ 770:145209. https://doi.org/10.1016/j.scitotenv.2021.145209
Picco L, Comiti F, Mao L, Tonon A, Lenzi MA (2017) Medium and short term riparian vegetation, island and channel evolution in response to human pressure in a regulated gravel bed river (Piave River, Italy). CATENA 149:760–769. https://doi.org/10.1016/j.catena.2016.04.005
Picco L, Scalari C, Iroumé A, Mazzorana B, Andreoli A (2021) Large wood load fluctuations in an Andean basin. Earth Surf Process Land 46:371–384. https://doi.org/10.1002/esp.5030
Piégay H, Mathias Kondolf G, Toby Minear J, Vaudor L (2015) Trends in publications in fluvial geomorphology over two decades: a truly new era in the discipline owing to recent technological revolution? Geomorphology 248:489–500. https://doi.org/10.1016/j.geomorph.2015.07.039
Pierson TC, Major JJ (2014) Hydrogeomorphic effects of explosive volcanic eruptions on Drainage Basins. Annu Rev Earth Planet Sci 42:469–507. https://doi.org/10.1146/annurev-earth-060313-054913
Pierson TC, Major JJ, Amigo Á, Moreno H (2013) Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bull Volcanol 75:1–17. https://doi.org/10.1007/s00445-013-0723-4
Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. In: Geomorphometry: concepts, software, applications, vol 33, pp 3–30. https://doi.org/10.1016/S0166-2481(08)00001-9
Poeppl RE, Keesstra SD, Maroulis J (2017) A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology 277:237–250. https://doi.org/10.1016/j.geomorph.2016.07.033
Poeppl RE, Fryirs KA, Tunnicliffe J, Brierley GJ (2020) Managing sediment (dis)connectivity in fluvial systems. Sci Total Environ 736. https://doi.org/10.1016/j.scitotenv.2020.139627
Rainato R, Martini L, Pellegrini G, Picco L (2021) Hydrological, geomorphic and sedimentological responses of an alpine basin to a severe weather event (Vaia storm). CATENA 207:105600. https://doi.org/10.1016/j.catena.2021.105600
Rhoades EL, O’Neal MA, Pizzuto JE (2009) Quantifying bank erosion on the South River from 1937 to 2005, and its importance in assessing Hg contamination. Appl Geogr 29:125–134. https://doi.org/10.1016/j.apgeog.2008.08.005
Roering JJ, Mackey BH, Marshall JA, Sweeney KE, Deligne NI, Booth AM, Handwerger AL, Cerovski-Darriau C (2013) ‘You are HERE’: connecting the dots with airborne lidar for geomorphic fieldwork. Geomorphology 200:172–183. https://doi.org/10.1016/j.geomorph.2013.04.009
Romero JE, Morgavi D, Arzilli F, Daga R, Caselli A, Reckziegel F, Viramonte J, Díaz-Alvarado J, Polacci M, Burton M, Perugini D (2016) Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): analyses of tephra fall deposits. J Volcanol Geotherm Res 317:15–29. https://doi.org/10.1016/j.jvolgeores.2016.02.027
Rosenqvist A, Shimada M, Ito N, Watanabe M (2007) ALOS PALSAR: a Pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45:3307–3316. https://doi.org/10.1109/TGRS.2007.901027
Schook DM, Rathburn SL, Friedman JM, Wolf JM (2017) A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections. Geomorphology 293:227–239. https://doi.org/10.1016/j.geomorph.2017.06.001
Schopper N, Mergili M, Frigerio S, Cavalli M, Poeppl R (2019) Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Sci Total Environ 658:1586–1600. https://doi.org/10.1016/j.scitotenv.2018.12.288
Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci Rev 105:71–100. https://doi.org/10.1016/j.earscirev.2011.01.001
Singh MK, Gupta RD, Snehmani Bhardwaj A, Ganju A (2016) Scenario-based validation of moderate resolution DEMs freely available for Complex Himalayan Terrain. Pure Appl Geophys 173:463–485. https://doi.org/10.1007/s00024-015-1119-5
Smith MW, Carrivick JL, Quincey DJ (2016) Structure from motion photogrammetry in physical geography. Prog Phys Geogr Earth Environ 40:247–275. https://doi.org/10.1177/0309133315615805
Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from Internet photo collections. Int J Comput vis 80:189–210. https://doi.org/10.1007/s11263-007-0107-3
Sofia G (2020) Combining geomorphometry, feature extraction techniques and Earth-surface processes research: the way forward. Geomorphology 355:107055. https://doi.org/10.1016/j.geomorph.2020.107055
Surian N, Rinaldi M (2003) Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–326. https://doi.org/10.1016/S0169-555X(02)00219-2
Swanson FJ, Jones JA, Crisafulli CM, Lara A (2013) Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geol 40. https://doi.org/10.5027/andgeoV40n2-a10
Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2, in: 2011 IEEE international geoscience and remote sensing symposium. Presented at the 2011 IEEE international geoscience and remote sensing symposium, pp 3657–3660. https://doi.org/10.1109/IGARSS.2011.6050017
Tadono T, Takaku J, Tsutsui K, Oda F, Nagai H (2015) Status of “ALOS world 3D (AW3D)” global DSM generation. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS). Presented at the 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 3822–3825. https://doi.org/10.1109/IGARSS.2015.7326657
Tarolli P (2014) High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216:295–312. https://doi.org/10.1016/j.geomorph.2014.03.008
Tarolli P, Sofia G (2016) Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255:140–161. https://doi.org/10.1016/j.geomorph.2015.12.007
Tonon A, Iroumé A, Picco L, Oss-Cazzador D, Lenzi MA (2017) Temporal variations of large wood abundance and mobility in the Blanco River affected by the Chaitén volcanic eruption, southern Chile. CATENA 156:149–160. https://doi.org/10.1016/j.catena.2017.03.025
Trevisani S, Cavalli M (2016) Topography-based flow-directional roughness: potential and challenges. Earth Surf Dyn 4:343–358. https://doi.org/10.5194/esurf-4-343-2016
Turnbull L, Hütt MT, Ioannides AA, Kininmonth S, Poeppl R, Tockner K, Bracken LJ, Keesstra S, Liu L, Masselink R, Parsons AJ (2018) Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl Netw Sci 3. https://doi.org/10.1007/s41109-018-0067-2
Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523. https://doi.org/10.1007/s100219900047
Van Eaton AR, Amigo Á, Bertin D, Mastin LG, Giacosa RE, González J, Valderrama O, Fontijn K, Behnke SA (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43:3563–3571. https://doi.org/10.1002/2016GL068076
Veblen T, Donoso C, Schlegel F, Escobar B (1981) Forest dynamics in South-Central Chile. J Biogeogr 8:211–247
Viles H (2016) Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 270:121–133. https://doi.org/10.1016/j.geomorph.2016.07.011
Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE (2011) Linking environmental régimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126:387–404. https://doi.org/10.1016/j.geomorph.2010.07.027
Wang J, Jin Z, Hilton RG, Zhang F, Densmore AL, Li G, West AJ (2015) Controls on fluvial evacuation of sediment from earthquake-triggered landslides. Geology 43:115–118. https://doi.org/10.1130/G36157.1
Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82. https://doi.org/10.1016/S0924-2716(99)00011-8
Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) “Structure-from-motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
Westoby MJ, Glasser NF, Brasington J, Hambre MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci Rev 134:137–159. https://doi.org/10.1016/j.earscirev.2014.03.009
White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction, the ecology of natural disturbance and patch dynamics. Academic Press. https://doi.org/10.1016/B978-0-08-050495-7.50006-5
Wilson JP (2012) Digital terrain modeling. In: Geomorphology, geospatial technologies and geomorphological mapping proceedings of the 41st annual Binghamton geomorphology symposium 137:107–121. https://doi.org/10.1016/j.geomorph.2011.03.012
Wilson R, Glasser NF, Reynolds JM, Harrison S, Anacona PI, Schaefer M, Shannon S (2018) Glacial lakes of the central and Patagonian Andes. Glob Planet Change 162:275–291. https://doi.org/10.1016/j.gloplacha.2018.01.004
Wischmeier WH, Smith DD (1978) Predicting Rainfall Erosion Losses—a guide to conservation planning. In: Agriculture handbook, vol 537. U.S. Department of Agriculture, Washington, DC
Wohl E (2017) Connectivity in rivers. Prog Phys Geogr 41:345–362 SN-0309-1333 1477–0296. https://doi.org/10.1177/0309133317714972
Wohl E (2020) Rivers in the landscape, 2nd edn. Wiley, Hoboken
Wohl E, Brierley G, Cadol D, Coulthard TJ, Covino T, Fryirs KA, Grant G, Hilton RG, Lane SN, Magilligan FJ, Meitzen KM, Passalacqua P, Poeppl RE, Rathburn SL, Sklar LS (2018) Connectivity as an emergent property of geomorphic systems. Earth Surf Process Landf. https://doi.org/10.1002/esp.4434
Wu B, Zheng S, Thorne CR (2012) A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Prog Phys Geogr 36:575–597. https://doi.org/10.1177/0309133312436569
Young NE, Anderson RS, Chignell SM, Vorster AG, Lawrence R, Evangelista PH (2017) A survival guide to Landsat preprocessing. Ecology 98:920–932. https://doi.org/10.1002/ecy.1730
Zanandrea F, Michel GP, Kobiyama M, Cardozo GL (2019) Evaluation of different DTMs in sediment connectivity determination in the Mascarada River Watershed, southern Brazil. Geomorphology 332:80–87. https://doi.org/10.1016/j.geomorph.2019.02.005
Zanandrea F, Michel GP, Kobiyama M, Censi G, Abatti BH (2021) Spatial-temporal assessment of water and sediment connectivity through a modified connectivity index in a subtropical mountainous catchment. CATENA 204:105380. https://doi.org/10.1016/j.catena.2021.105380
Zscheischler J, Westra S, van den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nat Clim Change 8:469–477. https://doi.org/10.1038/s41558-018-0156-3
Acknowledgements
This research was developed within the frame of the project FONDECYT 1200079 funded by the Chilean Government and developed within the project financed with PICC_BIRD2121_02 funds, Dept. TESAF, Università degli Studi di Padova.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Martini, L., Picco, L., Cavalli, M., Iroumé, A. (2023). Improving the Channel Network Management After a Large Infrequent Disturbance, Taking Advantage of Sediment Connectivity Analysis. In: Oyarzún, C., Mazzorana, B., Iribarren Anacona, P., Iroumé, A. (eds) Rivers of Southern Chile and Patagonia. The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-031-26647-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-26647-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26646-1
Online ISBN: 978-3-031-26647-8
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)