Skip to main content

Orthobiologic Treatment Options for Injuries in Endurance Athletes

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

The study of orthobiologics has been increasing over the past 40 years, not only because of the promise for reduced healing time, but also for the potential to prevent the need for surgical intervention. For endurance athletes, this can mean shorter recovery using only minimally invasive procedures. This chapter will focus on the field of orthobiologics, define clinically useful terms, and explain basic physiology of treatments, general indications for their use, and current recommendations for common lower limb injuries in endurance athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowden LG, Byrne HM, Maini PK, Moulton DE. A morphoelastic model for dermal wound closure. Biomech Model Mechanobiol. 2016;15(3):663–81.

    Article  CAS  PubMed  Google Scholar 

  2. Stafford CD 2nd, Colberg RE, Garrett H. Orthobiologics in elbow injuries. Clin Sports Med. 2020;39(3):717–32.

    Article  PubMed  Google Scholar 

  3. Kumar V, Abbas AK, Aster JC, Perkins JA. Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Elsevier/Saunders; 2015.

    Google Scholar 

  4. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165(6):728–37.

    Article  CAS  PubMed  Google Scholar 

  5. Park JS, Yang HJ, Woo DG, Yang HN, Na K, Park KH. Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. J Biomed Mater Res A. 2010;92(2):806–16.

    PubMed  Google Scholar 

  6. Grant M, Jerdan J, Merimee TJ. Insulin-like growth factor-I modulates endothelial cell chemotaxis. J Clin Endocrinol Metab. 1987;65(2):370–1.

    Article  CAS  PubMed  Google Scholar 

  7. Kratz G, Lake M, Ljungström K, Forsberg G, Haegerstrand A, Gidlund M. Effect of recombinant IGF binding protein-1 on primary cultures of human keratinocytes and fibroblasts: selective enhancement of IGF-1 but not IGF-2-induced cell proliferation. Exp Cell Res. 1992;202(2):381–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bhora FY, Dunkin BJ, Batzri S, et al. Effect of growth factors on cell proliferation and epithelialization in human skin. J Surg Res. 1995;59(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  9. Nanney LB. Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol. 1990;94(5):624–9.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Yuan Y, Li W. Sorting machineries: how platelet-dense granules differ from α-granules. Biosci Rep. 2018;38(5):BSR20180458.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  CAS  PubMed  Google Scholar 

  12. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author’s perspective. J Cutan Aesthet Surg. 2014;7(4):189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44(3):792–800.

    Article  PubMed  Google Scholar 

  14. Fitzpatrick J, Bulsara M, Zheng MH. The effectiveness of platelet-rich plasma in the treatment of tendinopathy: a meta-analysis of randomized controlled clinical trials. Am J Sports Med. 2017;45(1):226–33.

    Article  PubMed  Google Scholar 

  15. Mariani E, Canella V, Cattini L, et al. Leukocyte-rich platelet-rich plasma injections do not up-modulate intra-articular pro-inflammatory cytokines in the osteoarthritic knee. PLoS One. 2016;11(6):e0156137.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Filardo G, Kon E, Pereira Ruiz MT, et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single-versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2082–91.

    Article  PubMed  Google Scholar 

  17. Scott A, LaPrade RF, Harmon KG, et al. Platelet-rich plasma for patellar tendinopathy: a randomized controlled trial of leukocyte-rich PRP or leukocyte-poor PRP versus saline. Am J Sports Med. 2019;47(7):1654–61.

    Article  PubMed  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  19. Steinert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med. 2012;1(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101–15.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6.

    Article  CAS  PubMed  Google Scholar 

  22. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006;36(10):2566–73.

    Article  CAS  PubMed  Google Scholar 

  23. Lozito TP, Tuan RS. Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs. J Cell Physiol. 2011;226(2):385–96.

    Article  CAS  PubMed  Google Scholar 

  24. Ziegler CG, Van Sloun R, Gonzalez S, et al. Characterization of growth factors, cytokines, and chemokines in bone marrow concentrate and platelet-rich plasma: a prospective analysis. Am J Sports Med. 2019;47(9):2174–87.

    Article  PubMed  Google Scholar 

  25. Panero AJ, Hirahara AM, Andersen WJ, Rothenberg J, Fierro F. Are amniotic fluid products stem cell therapies? A study of amniotic fluid preparations for mesenchymal stem cells with bone marrow comparison. Am J Sports Med. 2019;47(5):1230–5.

    Article  PubMed  Google Scholar 

  26. Berger DR, Centeno CJ, Kisiday JD, McIlwraith CW, Steinmetz NJ. Colony forming potential and protein composition of commercial umbilical cord allograft products in comparison with autologous orthobiologics. Am J Sports Med. 2021;49(12):3404–13.

    Article  PubMed  Google Scholar 

  27. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

    Article  CAS  PubMed  Google Scholar 

  28. Eliasberg CD, Nemirov DA, Mandelbaum BR, et al. Complications following biologic therapeutic injections: a multicenter case series. Arthroscopy. 2021;37(8):2600–5.

    Article  PubMed  Google Scholar 

  29. Jo CH, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med. 2017;45(12):2774–83.

    Article  PubMed  Google Scholar 

  30. Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem cells (Dayton, Ohio). 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  31. Jayaseelan DJ, Moats N, Ricardo CR. Rehabilitation of proximal hamstring tendinopathy utilizing eccentric training, Lumbopelvic stabilization, and trigger point dry needling: 2 case reports. J Orthop Sports Phys Ther. 2014;44(3):198–205.

    Article  PubMed  Google Scholar 

  32. Goom TS, Malliaras P, Reiman MP, Purdam CR. Proximal hamstring tendinopathy: clinical aspects of assessment and management. J Orthop Sports Phys Ther. 2016;46(6):483–93.

    Article  PubMed  Google Scholar 

  33. Fredericson M, Moore W, Guillet M, Beaulieu C. High hamstring tendinopathy in runners: meeting the challenges of diagnosis, treatment, and rehabilitation. Phys Sportsmed. 2005;33(5):32–43.

    Article  PubMed  Google Scholar 

  34. Davenport KL, Campos JS, Nguyen J, Saboeiro G, Adler RS, Moley PJ. Ultrasound-guided intratendinous injections with platelet-rich plasma or autologous whole blood for treatment of proximal hamstring tendinopathy: a double-blind randomized controlled trial. J Ultrasound Med. 2015;34(8):1455–63.

    Article  PubMed  Google Scholar 

  35. Bradley JP, Lawyer TJ, Ruef S, Towers JD, Arner JW. Platelet-rich plasma shortens return to play in national football league players with acute hamstring injuries. Orthop J Sports Med. 2020;8(4):2325967120911731.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hamilton B, Tol JL, Almusa E, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943–50.

    Article  PubMed  Google Scholar 

  37. Hamid MSA, Mohamed Ali MR, Yusof A, George J, Lee LP. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42(10):2410–8.

    Article  Google Scholar 

  38. Segal NA, Felson DT, Torner JC, et al. Greater trochanteric pain syndrome: epidemiology and associated factors. Arch Phys Med Rehabil. 2007;88(8):988–92.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gordon EJ. Trochanteric bursitis and tendinitis. Clin Orthop. 1961;20:193–202.

    CAS  PubMed  Google Scholar 

  40. Tortolani PJ, Carbone JJ, Quartararo LG. Greater trochanteric pain syndrome in patients referred to orthopedic spine specialists. Spine J. 2002;2(4):251–4.

    Article  PubMed  Google Scholar 

  41. Fitzpatrick J, Bulsara MK, O'Donnell J, Zheng MH. Leucocyte-rich platelet-rich plasma treatment of gluteus medius and minimus tendinopathy: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2019;47(5):1130–7.

    Article  PubMed  Google Scholar 

  42. Rosário DAV, Faleiro TB, Franco B, Daltro GC, Marchetto R. Comparison between concentrated bone marrow aspirate and corticoid in gluteal tendinopathy. Acta Ortop Bras. 2021;29(1):26–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma: a prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am J Sports Med. 2017;45(2):339–46.

    Article  PubMed  Google Scholar 

  44. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–64.

    Article  PubMed  Google Scholar 

  45. Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis: an FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016;44(4):884–91.

    Article  PubMed  Google Scholar 

  46. Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49(1):249–60.

    Article  PubMed  Google Scholar 

  47. Dai WL, Zhou AG, Zhang H, Zhang J. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthroscopy. 2017;33(3):659–670.e651.

    Article  PubMed  Google Scholar 

  48. Tang JZ, Nie MJ, Zhao JZ, Zhang GC, Zhang Q, Wang B. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis. J Orthop Surg Res. 2020;15(1):403.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patel S, Dhillon MS, Bansal T. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee–letter to the editor & author response. J Stem Cells Regen Med. 2017;13(2):80–3.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gormeli G, Gormeli CA, Ataoglu B, Colak C, Aslanturk O, Ertem K. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):958–65.

    Article  PubMed  Google Scholar 

  51. Gobbi A, Lad D, Karnatzikos G. The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2170–7.

    Article  PubMed  Google Scholar 

  52. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45(1):82–90.

    Article  PubMed  Google Scholar 

  53. Mautner K, Bowers R, Easley K, Fausel Z, Robinson R. Functional outcomes following microfragmented adipose tissue versus bone marrow aspirate concentrate injections for symptomatic knee osteoarthritis. Stem Cells Transl Med. 2019;8(11):1149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dallo I, Szwedowski D, Mobasheri A, Irlandini E, Gobbi A. A prospective study comparing leukocyte-poor platelet-rich plasma combined with hyaluronic acid and autologous microfragmented adipose tissue in patients with early knee osteoarthritis. Stem Cells Dev. 2021;30(13):651–9.

    Article  CAS  PubMed  Google Scholar 

  55. Matas J, Orrego M, Amenabar D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med. 2019;8(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  56. Quintana JM, Arostegui I, Escobar A, Azkarate J, Goenaga JI, Lafuente I. Prevalence of knee and hip osteoarthritis and the appropriateness of joint replacement in an older population. Arch Intern Med. 2008;168(14):1576–84.

    Article  PubMed  Google Scholar 

  57. Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med. 2016;44(3):664–71.

    Article  PubMed  Google Scholar 

  58. Battaglia M, Guaraldi F, Vannini F, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013;36(12):e1501–8.

    Article  PubMed  Google Scholar 

  59. Di Sante L, Villani C, Santilli V, et al. Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis. Med Ultrason. 2016;18(4):463–8.

    Article  PubMed  Google Scholar 

  60. Doria C, Mosele GR, Caggiari G, Puddu L, Ciurlia E. Treatment of early hip osteoarthritis: ultrasound-guided platelet Rich plasma versus hyaluronic acid injections in a randomized clinical trial. Joints. 2017;5(3):152–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the "tendinitis" myth. BMJ. 2002;324(7338):626–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Figueroa D, Figueroa F, Calvo R. Patellar tendinopathy: diagnosis and treatment. J Am Acad Orthop Surg. 2016;24(12):e184–92.

    Article  PubMed  Google Scholar 

  63. Kettunen JA, Kvist M, Alanen E, Kujala UM. Long-term prognosis for jumper's knee in male athletes. A prospective follow-up study. Am J Sports Med. 2002;30(5):689–92.

    Article  PubMed  Google Scholar 

  64. Lian Ø, Scott A, Engebretsen L, Bahr R, Duronio V, Khan K. Excessive apoptosis in patellar tendinopathy in athletes. Am J Sports Med. 2007;35(4):605–11.

    Article  PubMed  Google Scholar 

  65. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42(3):610–8.

    Article  PubMed  Google Scholar 

  66. Vetrano M, Castorina A, Vulpiani MC, Baldini R, Pavan A, Ferretti A. Platelet-rich plasma versus focused shock waves in the treatment of jumper's knee in athletes. Am J Sports Med. 2013;41(4):795–803.

    Article  PubMed  Google Scholar 

  67. Andriolo L, Altamura SA, Reale D, Candrian C, Zaffagnini S, Filardo G. Nonsurgical treatments of patellar tendinopathy: multiple injections of platelet-rich plasma are a suitable option: a systematic review and meta-analysis. Am J Sports Med. 2019;47(4):1001–18.

    Article  PubMed  Google Scholar 

  68. Rodas G, Soler-Rich R, Rius-Tarruella J, et al. Effect of autologous expanded bone marrow mesenchymal stem cells or leukocyte-poor platelet-rich plasma in chronic patellar tendinopathy (with gap >3 mm): preliminary outcomes after 6 months of a double-blind, randomized, prospective study. Am J Sports Med. 2021;49(6):1492–504.

    Article  PubMed  Google Scholar 

  69. Lysholm J, Wiklander J. Injuries in runners. Am J Sports Med. 1987;15(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  70. Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1992;11(3):533–78.

    Article  CAS  PubMed  Google Scholar 

  71. de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for chronic achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.

    Article  PubMed  Google Scholar 

  72. Krogh TP, Ellingsen T, Christensen R, Jensen P, Fredberg U. Ultrasound-guided injection therapy of achilles tendinopathy with platelet-rich plasma or saline: a randomized, blinded, placebo-controlled trial. Am J Sports Med. 2016;44(8):1990–7.

    Article  PubMed  Google Scholar 

  73. Mishra AK, Skrepnik NV, Edwards SG, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.

    Article  PubMed  Google Scholar 

  74. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of high-volume injection, platelet-Rich plasma, and sham treatment in chronic Midportion Achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med. 2017;45(9):2034–43.

    Article  PubMed  Google Scholar 

  75. Usuelli FG, Grassi M, Maccario C, et al. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2000–10.

    Article  PubMed  Google Scholar 

  76. Erroi D, Sigona M, Suarez T, et al. Conservative treatment for insertional Achilles tendinopathy: platelet-rich plasma and focused shock waves. A retrospective study. Muscles Ligaments Tendons J. 2017;7(1):98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Neufeld SK, Cerrato R. Plantar fasciitis: evaluation and treatment. J Am Acad Orthop Surg. 2008;16(6):338–46.

    Article  PubMed  Google Scholar 

  78. Buchbinder R. Clinical practice. Plantar fasciitis. N Engl J Med. 2004;350(21):2159–66.

    Article  CAS  PubMed  Google Scholar 

  79. Knobloch K, Yoon U, Vogt PM. Acute and overuse injuries correlated to hours of training in master running athletes. Foot Ankle Int. 2008;29(7):671–6.

    Article  PubMed  Google Scholar 

  80. Gill LH. Plantar fasciitis: diagnosis and conservative management. J Am Acad Orthop Surg. 1997;5(2):109–17.

    Article  CAS  PubMed  Google Scholar 

  81. Schepsis AA, Leach RE, Gorzyca J. Plantar fasciitis. Etiology, treatment, surgical results, and review of the literature. Clin Orthop Relat Res. 1991;(266):185–96.

    Google Scholar 

  82. Peerbooms JC, Lodder P, den Oudsten BL, Doorgeest K, Schuller HM, Gosens T. Positive effect of platelet-rich plasma on pain in Plantar fasciitis: a double-blind multicenter randomized controlled trial. Am J Sports Med. 2019;47(13):3238–46.

    Article  PubMed  Google Scholar 

  83. Shetty SH, Dhond A, Arora M, Deore S. Platelet-rich plasma has better long-term results than corticosteroids or placebo for chronic Plantar fasciitis: randomized control trial. J Foot Ankle Surg. 2019;58(1):42–6.

    Article  PubMed  Google Scholar 

  84. Huang K, Giddins G, Wu LD. Platelet-rich plasma versus corticosteroid injections in the management of elbow epicondylitis and Plantar fasciitis: an updated systematic review and meta-analysis. Am J Sports Med. 2020;48(10):2572–85.

    Article  PubMed  Google Scholar 

  85. Hurley ET, Shimozono Y, Hannon CP, Smyth NA, Murawski CD, Kennedy JG. Platelet-Rich plasma versus corticosteroids for Plantar fasciitis: a systematic review of randomized controlled trials. Orthop J Sports Med. 2020;8(4):2325967120915704.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hohmann E, Tetsworth K, Glatt V. Platelet-Rich plasma versus corticosteroids for the treatment of Plantar fasciitis: a systematic review and meta-analysis. Am J Sports Med. 2021;49(5):1381–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Baria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randazzo, E., Baria, M.R. (2023). Orthobiologic Treatment Options for Injuries in Endurance Athletes. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics